基于DSP DUC的短波阵列信号发生器

发布者:等放假的zr0最新更新时间:2007-04-25 来源: 电讯技术关键字:接收  声纳  后端  电磁 手机看文章 扫描二维码
随时随地手机看文章

  一、引言

  阵列信号处理作为数字信号处理领域的一个重要分支,广泛应用于雷达、声纳、通信、地震勘探和医用成像等众多领域;短波频段则常用于短波测向和波束合成技术。

  在短波频段,阵列信号处理设备通常包括短波天线阵、短波多波道接收机、后端阵列信号处理机3个主要组成部分。其中,短波天线阵接收空间短波信号,短波接收机对HF信号作模拟下变频,阵列信号处理机则对短波多波道接收机输出信号作数字采样并进行相应的阵列信号处理算法,给出最终运算结果。

  短波天线阵由于短波频段的限制,通常天线单元的体积比较大,天线阵的孔径也比较大,占地往往近十亩;而且为了达到比较好的接收效果,短波天线阵对周边电磁环境的要求也相当高。这都给短波阵列信号处理机研制过程中的调试和试验带来了极大的不便,同时也很不利于阵列信号处理机针对不同阵列流型短波信号的各种DSP算法研究和验证。
  
  针对短波阵列信号处理设备研制、调试的实际情况,笔者选用数字信号处理器芯片(DSP)和数字上变频器芯片(Digital UpConverter,DUC)设计了一个模拟短波天线阵输出信号的阵列信号发生器,可以在实验室环境下取代短波天线阵,产生各种不同阵列流型相对应的短波阵列信号,提供阵列信号处理机DSP算法的调试和验证条件。

  二、设计思路

  按照设计构想,本阵列信号发生器应该能够灵活地产生对应不同阵列形式(携带有不同阵列形式对应的幅度差和相位差)、基本覆盖1~30MHz频段范围的短波阵列信号。

  
  如果采用传统的模拟上变频电路实现射频输出,很难满足设计构想,因此笔者采用软件无线电的思想,选用了数字上变频器(DUC),在数字域作上变频,然后通过D/A变换产生短波高频模拟信号。为了实现不同阵列形式所带来的幅度差和相位差,笔者选用了DSP芯片,在数字域对多个信号加入不同的幅度及相位差。
  
  如图1所示,阵列信号发生器的总体设计思路为:以DSP和DUC为核心,利用外部音频信号输入的A/D采样数据作为调制信号数据,由DSP对预制的载波信号(较低频率)作数字调制运算,并根据可选的不同阵列流型对已调数字信号分别加上9个不同的幅度差和相位差后,经FPGA分别送到9个DUC中,经数字上变频及D/A变换后输出9路短波阵列信号。

  在设计中由于实际的音频调制信号要经过DSP芯片的数字调制运算,再分配到9个DUC中,因此使用一个大规模的FPGA逻辑芯片作为DSP芯片和9个DUC芯片之间的数据交换接口。

  三、器件选择

  1.DSP
  作为本设计的核心器件,DSP芯片的运算能力要求比较高,同时又存在运算过程中大量数据交换的特点,经过综合比较,笔者选用了Analog Device公司的SHARC-DSP系列中的ADSP-21060。

  ADSP-21060是32位浮点DSP,使用40 MHz主时钟,运算能力可达120 MFLOPS;片内带有4 Mbit的双口SRAM(对本设计,则不需要外部另行扩充存储器,所有运算所需存储空间均由内部支持,大大减少与外部存储器交换数据的DSP时间开销);支持10个DMA通道供片内SRAM和外部存储器、串口等交换数据(本设计利用其DMA通道传递音频采样数据)。

  2.串行A/D
  本设计之所以采用串行A/D对外部输入音频进行数字采样,主要是考虑到外部输入信号应不间断地进入DSP的内存中,可利用ADSP-21060的串口DMA方式传递数据。因此笔者选用了Analog Device公司的双声道串行音频采样器AD1847。

  3.数字上变频器
  
  DUC的主要功能是对输入数据进行频率变换、频谱搬移,即在数字域实现混频。笔者选用了Analog Device公司的AD9857作为本设计的DUC。
  
  AD9857是14位正交数字上变频器(QDUC),最高工作时钟为200 MHz,内部集成有高速直接数字合成器(DDS)、数字内插滤波器、时钟倍频电路以及用户可编程功能;而且内部集成有一个14位数模转换器(DAC),可以直接输出模拟高频信号。
  
  由于AD9857把数据传输路径从模拟领域转移到数字领域,在物理上模拟电路功能与数字部件是分开的,因此当修改电路参数或系统升级时,只需通过AD9857的SPI串行编程端口对内部寄存器做一些简单的修改,不需要改变硬件电路即可实现。

  4.FPGA
  由于本设计中存在大量的高速数据交换,因此作为DSP和DUC数据接口的FPGA规模要求比较大,笔者选用的是Altera公司FLEX系列中的EPF10K50E。
EPF10K50E典型逻辑门数为5万门,片内含有40 kbit的RAM,可满足较大量的数据缓存和数据交换要求。

  四、 设计实现

  在设计实现中,本设计的主要工作集中在DSP程序编制和FPGA软件调试两个方面。
  1.DSP程序
  DSP作为整个设计的主控者,主要完成以下3个方面的功能:

  首先,DSP对串行A/D采样器AD1847进行简单的配置,如采样率、数据格式等,并配置自身的接收串口,设置为链式DMA方式,从而在一块指定的内存区间不间断地重复存储和刷新音频采样数据;
  其次,DSP将对DMA存储空间的数据作数字调制运算,载波信号使用的是预制的几组较低频率(如5 kHz、10 kHz等)的余弦信号之一;然后对已调数字信号根据不同的阵列流型添加不同的幅度、相位差,构成带有幅度和相位差别的阵列信号;最后将阵列信号数据按照不同的端口地址,以并行的方式写入FPGA中各自对应的暂存FIFO中,由FPGA负责将其分配至各个DUC数据端口;
  
  再次,DSP对9个DUC内部寄存器的配置,包括上变频倍数、输出载波频率、频谱搬移方式、输出模拟信号幅度等。DSP对于DUC的配置是以向不同地址的外部端口写入并行数据字的方式进行的,再通过FPGA的数据转换功能转变为串行SPI数据格式,分别对每个DUC作寄存器配置。

  2.FPGA程序
  FPGA的功能是实现DSP与9个DUC之间的数据格式转换和分发工作,如图2所示,FPGA根据不同地址将DSP数据总线转送到不同的DUC(#1~#9)接口单元。

  对于DUC配置数据,每个DUC接口单元先将其锁存,再对锁存数据作并/串转换,转变为SPI形式串行数据后,分别对每个DUC进行其内部寄存器设置。

  对于待上变频数据,每个DUC接口单元都先将其送入一个64×16 bit的双时钟FIFO中,然后9个DUC同一时刻将各自的待上变频数据分别从FIFO中读出,作DUC运算,并以模拟信号输出。

  五、结束语

  本文所介绍的短波阵列信号发生器已用于实际短波测向系统的实验室验证,其多路短波阵列模拟信号输出可直接送入短波多波道接收机。

  由于本信号发生器共有9路输出,因此可适用于9元及9元以下的各种阵型天线阵信号的模拟。通过对于信号发生器中DSP程序的选择,可选择所要模拟的阵型,并设置所希望的来波方向,从而产生带有阵型幅度和相位信息的多路阵列信号,提供给DSP算法的实际验证环境。

  目前已测试了常用的直线阵、方阵(3×3,2×2)、圆阵(均匀,非均匀)等多种阵型,试验结果都达到了预期效果。
  
  另外,本设计对外部双声道音频采样,可通过在左右声道上加上不同的音频信号,从而得到2个不同的调制信号,在DSP程序中将两者叠加,就可模拟短波测向中常遇到的同频多个信号的情况,用于验证测向算法对于同频多信号的区分能力。
  
  在阵列信号处理机的调试过程中,短波阵列信号发生器的应用,极大地方便了短波频段阵列信号处理设备的实验室研制和调试,使得设备的外场调试时间大幅度缩短。

  参考文献
[1]杨小牛,楼才义,徐建良.软件无线电原理与应用[M].北京:电子工业出版社,2001.
[2]Analog Devices Inc.AD9857 Data Sheets[DB/OL].http://www.analog.com/UploadedFiles/Data-Sheets/17641956AD9857-b.pdf,2002.
[3]Analog Devices Inc.ADSP21060 Data Sheets[DB/OL].http://www.analog.com/UploadedFiles/Data-Sheets/545457694ADSP-21060-L-d.pdf,2000.

关键字:接收  声纳  后端  电磁 引用地址:基于DSP DUC的短波阵列信号发生器

上一篇:基于DSP DUC的短波阵列信号发生器
下一篇:基于IP核的FPGA 设计方法

推荐阅读最新更新时间:2024-05-02 20:35

电磁转矩与转速的关系
电磁转矩是指电动机的转矩。也就是电磁所产生的转矩。 电磁力矩是电流产生的磁场对带电导体(包括线圈类。直导线类)所产生的应力效应。比喻吸力和斥力。配电部分当然有机会发生电磁力矩损坏设备的。比喻母线短路所产生的电磁力足可以扭曲母线和震碎瓷 转矩是各种工作机械传动轴的基本载荷形式,与动力机械的工作能力、能源消耗、效率、运转寿命及安全性能等因素紧密联系,转矩的测量对传动轴载荷的确定与控制、传动系统工作零件的强度设计以及原动机容量的选择等都具有重要的意义。 电磁转矩和转速之间是有一定的关系的。在一定范围内,电磁转矩随着转速的变化呈现比较典型的特性。 在电机正常运行时,通常采用定子上施加三相交流电压,使转子转动。当电流增大时,会产
[嵌入式]
恩智浦推出采用高性能硅调谐器的电视接收方案
中国上海,2011年6月16日 - 恩智浦半导体今日宣布,中国领先的电视制造商之一康佳集团股份有限公司,近期全面选用恩智浦硅调谐器解决方案TDA18273应用于其模拟和数字电视的接收,成为国内首批以TDA18273硅调谐器进行成功的电视接收方案设计并批量上市的电视机厂商。 采用TDA18273的硅调谐器方案改变了传统的设计模式。传统调谐器已经历了40多年发展,它由多达150多个元器件组成,在生产的时候往往需要手动调整。和传统调谐器相比,采用TDA18273硅调谐器的方案有更大的灵活性,性能指标优秀,由于同时省去了配备低噪声放大器(LNA)、SAW滤波器、并且显著减少外围元器件数量,提高了整机的可靠性。 由于硅调谐器即将取代
[家用电子]
反激式开关电源的变压器电磁兼容性设计
本文以一款反激式开关电源为例,阐述了其传导共模干扰的产生、传播机理。根据噪声活跃节点平衡的思想,提出了一种新的变压器EMC设计方法。通过实 验验证,与传统的设计方法相比,该方法对传导电磁干扰(EMI)的抑制能力更强,且能降低变压器的制作成本和工艺复杂程度。本方法同样适用于其他形式的带变压器拓扑结构的开关电源。 随着功率半导体器件技术的发展,开关电源高功率体积比和高效率的特性使得其在现代军事、工业和商业等各级别的仪器设备中得到广泛应用,并且随着时钟频率的不断提高,设备的电磁兼容性(EMC)问题引起人们的广泛关注。EMC设计已成为开关电源开发设计中必不可少的重要环节。 传导电磁干扰(EMI)噪声的抑制必须在产品开发初期就加以考虑。通常
[电源管理]
反激式开关电源的变压器<font color='red'>电磁</font>兼容性设计
电磁流量计的安装结构及电极材料选择
安装结构 电磁流量计主机与传感器组装在一起,可构成一体式电磁流量计;或与流量传感器通过信号电缆连接,构成分体式电磁流量计。分体式的转换器安装在墙上或支架上。 口径选择 当测量管道的常用流速超过0.5米/秒时,选择与测量管道相同直径的流量计。 在以下情况下选择直径小于测量管道的流量计:测量管道中流速较缓,无法满足流量计的测量要求或者在该流速下其测量精度无法满足(要取得相对较高精度,流速下限应大于1m/s)。 电极材料选择 1.不锈钢316L:用于工业用水、生活用水、污水等弱腐蚀性的介质及中性溶液和碳酸、醋酸等弱酸。 2.钛:耐海水、各种氯化物和次氯酸盐及多各氢氧化物的腐蚀。 3.哈氏合金C:耐氧化性酸,如硝酸、混酸、铬酸与硫
[测试测量]
<font color='red'>电磁</font>流量计的安装结构及电极材料选择
EMC接收机与频谱分析仪在EMC测试区别
在EMC测试设备选型时,常遇到这样的问题:EMI接收机与频谱仪到底有何不同,为何EMI测试要选用接收机?本文依据CISPR16-1(GB/T6113)和GJB152,对于接收机的测试原理进行剖析,分析接收机与频谱测试设备的选择提供参考-符合标准的接收机是EMC合格评定测试的唯一选择。文章介绍了接收机与频谱分析仪的差异。 接收机和频谱分析仪的原理差异 频谱分析仪是当前频谱分析的主要工具,尤其是扫频外差式频谱分析仪是当今频谱仪的主流,应用扫频测量技术,通过扫频信号源得到外差信号进行频域动态分析。 接收机是进行EMC测试的主要工具,以点频法为基础,应用本振调谐的原理测试相应频点的电平值。接收机的扫描模式应当是以步进点频调谐的方式得
[测试测量]
单片机编码 无线模块发送与接收 程序
模块型号,可在万能的某宝搜索【超再生无线模块】 接收距离:空旷200米 接收端在没有收到讯号,会生成间歇性尖状脉冲,data接LED负极,5V接LED正极,可看见闪烁 【科普知识】 无线收发,天线计算公式: 电磁波的速度,30W公里每秒,即3X10^8m/s 频率的单位有MHZ,(兆赫兹),KHZ(千赫兹)HZ(赫兹),相互之间关系是1MHZ=1000KHZ=1000000HZ, 波长=速度/频率 前辈们经验告诉我们,1/4波长的天线是较靠谱的 315M的1/4波长天线计算公式,导线传播高频信号的缩短率在0.98 (300000000/315000000)/4*0.98=0.23333(M)=23.3(
[单片机]
单片机编码 无线模块发送与<font color='red'>接收</font> 程序
电磁兼容抗扰度测试仪器的校准---静电ESD篇
电子电器产品在进入市场之前一般都需要经过电磁兼容测试,主要是为了避免电子产品在使用的过程中会受到电磁干扰。 随着电磁兼容抗扰度测试仪器的普及,电磁兼容测试仪器的校准计量也就显得越来越重要了! 静电抗扰度测试对于大型设备可能并不是很重要,但在今天这个互联网科技井喷,伴随5G商用的时代,各种产品普遍越来越小型化,ESD测试已然成为大部分设备的“关键”电磁兼容测试之一,例如在便携式计算器、MP3和MD播放器、USB存储棒、音频设备等。 在静电放电发生器的计量校准中,静电的放电电压我们一般是用高压探头和示波器连接来检测静电的电压,这关系到静电枪的高压是否在标准误差的范围。 而在静电放电发生器的计量校准中,还有一个至关重要的
[测试测量]
<font color='red'>电磁</font>兼容抗扰度测试仪器的校准---静电ESD篇
开关电源的电磁兼容性设计
    摘要: 系统地分析了开关电源产生噪声的主要原因及产生噪声的回路和部件,给出了相应的抗干扰措施,从而提高了形状电源的电磁兼容性。     关键词: 开关电源 噪声 电磁兼容性 开关电源不需要沉重的电源变压器,具有体积小、重量轻、效率高的优点,且市场上已有成品开关电源集成控制模块,使电源设计、调试简化许多,所以,在大多数的电子设备(如计算机、电视机及各种控制系统)中得到了广泛的应用。然而,开关电源自身产生的各种噪声却形成了一个很强的电磁干扰源。这些干扰随着开关频率的提高、输出功率的增大而明显地增强,对电子设备的正常运行构成了潜在的威胁。因此,只有提高开关电源的电磁兼容性,才能使开关电源在那些对电源噪声指标
[应用]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved