基于DDS与USB的通信对抗教学演示系统

发布者:cxx7848653最新更新时间:2007-07-25 来源: 现代电子技术关键字:跳频  扩频  侦察  接收 手机看文章 扫描二维码
随时随地手机看文章

  1概 述

  扩展频谱通信具有抗干扰能力强、隐蔽性好等优点,已成为通信对抗与反对抗中最重要的技术手段,在军事通信中日益受到重视,跳频电台就是扩频通信在军事领域中的重要应用。在通信对抗中如何有效地对抗跳频电台是目前的一个热点问题。在通信对抗的教学中为了以实验的形式向人们展示跳频通信中干扰与抗干扰的原理,并能对跳频通信进行侦察和实施多种干扰的效果进行比较,为科研中寻找对跳频通信的最有效干扰方式提供有效的数据和参考,本文给出了一种基于DDS与USB技术的通信对抗教学演示系统中硬件方案的设计与实现。

  2 系统整体结构设计及原理说明

  系统主要由控制计算机、发射机、电子侦察模块、电子干扰模块和接收机等五部分组成,如图1所示。计算机主要是用于控制与协调各个模块的工作和数据传输,决定系统各部分的工作模式并对工作状态进行实时监视。

  发射机在计算机指令的控制下,在指定的工作频段内以相应的方式发射跳频信号。电子侦察模块利用高速A/D采样技术与高速FFT实时处理技术可以快速地捕捉并计算出发射信号的工作频率点,同时将侦察到的跳频数据送至电子干扰模块。接收到侦察数据的干扰模块在计算机控制下利用FPGA控制频率合成器件产生各种调制信号,选择不同的干扰方式对通信电台实时有效的干扰。干扰信号与实际跳频信号分别送人合路器中,由合路器送至接收机比较各种不同干扰方式的实际效果。

  3器件的选择

  3.1 A/D芯片与FPGA芯片

  A/D芯片选用的是为宽带和多信道数字无线接收机系统而推出的12位中频快速采样芯片AD6640。

  AD6640是一个高速度、高性能、低功耗,单片式12位AD转换器,内含采样保持电路和基准源。他由单电源+5 V供电,TTL/CMOS兼容电平输出,中频采样频率的典型值为70 MHz(多信道时)和200 MHz(单信道时),采样速率可达65 Mb/s,信噪比SNR的典型值为68 dB,SFDR值为80 dB,功耗为710 mW。AD6640采用两级子区式的转换结构,既保证了精度又降低了功耗,其功能模块如图2所示。从图2可以看出ADC所有需要的功能,包括输入缓冲,跟踪保持放大,数字纠错以及2.4 V参考电压都由芯片提供,从而使其设计变得更轻松。

  FPGA芯片采用的是Altera公司的ACEXlK系列产品的EPlKl00芯片。其特点是将查找表(LUT)和EAB相结合,提供了高效率而又廉价的结构。基于LUT的逻辑对数据路径管理、寄存器强度、数学计算或数字信号处理(DSP)的设计提供优化的性能和效率,而EAB可实现RAM,ROM,双口RAM或FIFO功能。这使得ADEXlK适合于复杂逻辑及存储器功能,如数字信号处理、宽域数据路径管理、数据变换和微处理器等各种高性能通信应用。基于可重构CMOS SRAM单元,ACEX1K结构具有实现一般门阵列宏功能需要的所有特征,相应的多引脚数提供与系统元器件的有效接口。先进的处理功能和2.5 V低电压要求,使得AC2EX1K器件满足廉价、高容量的应用需要。

  3.2 DDS芯片

  DDS芯片选用的是美国的Analog Device Inc(ADI)公司生产的DDS器件AD9854。AD9854数字频率合成器是一个采用了先进的DDS技术的高集成器件。

  他具有一对内部高速、高性能的正交D/A转换器和比较器,可实现数字合成正交的I和Q路输出。当输入一准确的参考频率,AD9854即可产生一高稳定的频率、相位、幅度可编程的正弦和余弦信号。AD9854的DDS核心具有48 b的频率分辨率。14 b相位截断保证了优良的SFDR指标。AD9854的电路工艺使同步正交信号输出的频率最高达到150 MHz,平均每秒产生1百万新频率。AD9854中4~20整数倍的可编程参考频率累加器能使外部输入的低速时钟转变成内部高速时钟(最高300 MHz)。

  AD9854能实现除了基本的FSK以外的增强频谱特性的Ramped FSK。该器件采用了先进的35μmC2MOS技术使该器件只需要+3.3 V的电源供应。

  3.3 DAC芯片与USB芯片

  系统所用的DAC为ADI公司的AD5344,他是一种低功耗12 b数模转换器。该芯片可应用于便携式电池电源仪器、可编程电压和电流源、可编程衰减器、工业处理控制器以及数字放大和补偿调节等方面。图3为其内部结构原理图。AD5344有4路12 b DAC,可在2.5~5.5 V之间正常工作,在外接+3 V电压时典型电流值为500μA,并且具备进一步将电流降至80 nA的节电模式。他的输出缓存可将输出驱动到两个电源轨道之上。通过A0和A1可控制选择哪一路输出。

  在控制模块中LISB芯片选用的是FTDI公司的FT245BM。该芯片是FTDI公司早期生产的一种较通用的支持USB 1.1标准的专用芯片,其优点在于芯片通用性好,无需固件配置,控制时序简单,而且厂家提供了完备的各类库函数供编程使用,极大地缩短了开发周期。

  FT245BM内部结构框图如图4所示,FT245BM内部主要由USB收发器、串行接口引擎(SIE)、USB协议引擎和先进先出(FIFO)控制器等构成。他的一个比较明显的优点就是,内部集成的模块功能完备,不需要在使用时重新对其进行配置。在接收到主机发出的控制命令后,USB收发器自动执行命令,并通过串行接口引擎完成USB数据的串/并双向转换。USB协议引擎按照USB 1.1的规范来完成对FIFO控制器的管理,FIFO控制器通过其两个握手信号的输出端口RXF#和TXE#来引导外部主控制器对USB芯片的读写控制。

  4系统的设计实现

  4.1 干扰模块的设计

  干扰模块原理图如图5所示。在干扰模块的设计中,选用了常用的DDS芯片AD9854与FPGA相结合的方式来产生干扰频率。为了实现干扰信号功率的可控制,拟在DDS输出的信号加上衰减器。采用计算机通过USB芯片来控制干扰模式的选择和干扰信号参数的选择。DDS产生的信号先通过低通滤波再放大,目的是为抑制杂散信号。



  在跟踪式干扰中,FPGA接收电子侦察所获得的通信信号,引导DDS产生同频的干扰信号。在非跟踪式干扰中,由计算机控制产生单频干扰、扫频干扰以及随机调频噪声等样式的干扰信号,这些干扰信号和原跳频信号在合路器合路输出,送给跳频接收机,以此来检验跳频通信对这些干扰样式的抗干扰能力。

  4.2控制模块的设计

  在系统的整体设计过程中,非常重要的部分就是对于整个实验系统的控制。系统的整体控制模块原理框图如图6所示。

  从图中可以看出,干扰模块中的FPGA芯片,在系统控制中起着核心作用。在该模块中,FPGA主要完成4个方面的任务:

(1)实现与电子侦察模块的实时通信,不断地接收侦察模块送来的跳频信号信息,并立即做出相应的反应。

(2)实现与计算机主机的通信,控制USB芯片的读写程序,随时接收主机发出的控制指令,并完成相应的功能。

(3)实现对DDS芯片的控制,根据需要选择DDS不同的工作模式。

(4)实现对衰减器的控制,根据主机的命令选择不同的频率幅度。

  5 结 语

  通过对实际硬件电路的分析与调试,系统实现了计算机对USB芯片的控制、FPGA对DDS芯片的控制、侦察模块与干扰模块的互连通信以及各类干扰方式的可控实现。在进行实际试验时,通过对不同干扰方式的效果进行比较,还可以选择出对跳频电台通信最有效的干扰方式,并且对今后研究实战形式的跳频侦察干扰系统具有一定的实际参考意义。

关键字:跳频  扩频  侦察  接收 引用地址:基于DDS与USB的通信对抗教学演示系统

上一篇:TMS320F206外围电路典型设计
下一篇:基于FPGA的数字交换系统的设计与实现

推荐阅读最新更新时间:2024-05-02 20:37

MSP430F149单片机实现uart数据接收中断
/***************************************************** 程序功能:MCU不停向PC机发送数据,在屏幕上显示0~127对应 的ASCII字符 ------------------------------------------------------ 通信格式:N.8.1, 9600 ------------------------------------------------------ 测试说明:打开串口调试精灵,正确设置通信格式,观察屏幕 ******************************************************/ #in
[单片机]
MSP430F149单片机实现uart数据<font color='red'>接收</font>中断
ADI推出四通道、24 GHz接收机下变频器 ADF5904
Analog Devices, Inc.近日推出一款高度集成的四通道、24 GHz接收机下变频器MMIC ADF5904,具有业界最佳的低噪声性能、高线性度和低功耗性能组合。ADF5904集成式多通道接收机下变频器具有10 dB噪声系数,优于竞争型器件3 dB,而功耗低50%,采用高性价比小型5 5 mm LFCSP塑料封装。该器件的四个片内接收通道采用简单的单端连接与四个独立天线相连,从而简化了射频传输线设计和PCB布局布线,同时缩小了电路板尺寸。该接收机下变频器可同时直接处理四个接收信号,以产生高质量、高幅度基带信号,从而轻松连接ADI的四通道模数转换器。ADF5904还集成了一个温度传感器,无需分立式检测元件,因此系统
[模拟电子]
用单片机控制红外编码探测障碍物
1 探测障碍的原理 在室内自动感知障碍的设备中,常使用红外线探测障碍物的存在与否。探测的基本原理是:在测量的范围内,主动向探测方向发射红外信号,如果存在障碍物,就会把发射的信号反射回发送端。在发送端,如果收到反射的信号,就确认障碍物的存在。 但是在实际应用中,红外干扰源较多;而且在有反射光的情况下,由于光线的干扰,很容易判断失误,出现虚警。因此,有些设备在发射信号时,改进为发送一串连续的红外脉冲,然后接收反射的信号。如果接收到的红外脉冲数量超过某一门限值时,就判断障碍存在。这种方法尽管在一定程度上可以降低虚警率,但实验表明,在较强的反射光和使用电子镇流器方式的日光灯起辉时,仍很容易出现干扰现象。 本文提出解决干扰的方案是:由
[应用]
基于MSP430单片机驱动NRF24L01无线模块接收C语言程序
NRF24L01无线模块在此程序中可以直接与MSP430单片机直接相连,单片机的电压和无线模块的电压都是3.3V, 无需加阻流电阻。通信接口为单片机模拟的SP口,LC12864液晶屏主要是用作把接收到数据通过其显示出来。 程序测试通过,可用! //p4口为液晶屏 //p1口中断 //nRF24L01无线通信 //p5.0 csn //p5.1 mosi //p5.3 sck //p5.2 miso //p1.2 irq //p5.7 ce //ST7920串行控制128*64液晶 //rst p4.3 复位 //rs p4.0 片选 //rw p4.1 数据 //E p4.2 时钟 #include msp430
[单片机]
STM32使用CubeMAX配置的串口中断接收方法
STM32使用cubeMAX可以快速建立工程模板,但是默认使用的是Hal库构成的工程,对于习惯使用了ST标准库的同学来说,灵活调用HAL库可能会比较生疏,我也是这么觉得的,但是还是要逐步去接触学习它,毕竟这个hal库的封装还是相当好的,有好多先进的思想和用法。 在学习过程中,我遇到了一个问题,之前也遇到过,但是没时间去研究,就是串口在CUBUMAX上配置好后,如何实现串口中断接收,接下来就来记录一下我学习到的知识: 1.定位串口中断发生的地方 HAL库的中断处理还是和标准库一样的,在stm32xxxx_it.c中定义我们定位到如下函数: HAL_UART_IRQHandler(&huart1); 再往下定位,我们找
[单片机]
法拉第未来接收车身装配关键设备:来自中国
2月18日,由贾跃亭一手创办的FaradayFuture(法拉第未来,简称FF)在微信公众号发文称,其汉福德工厂已经完成接收明珞智能生产制造设备,这批设备将用于品牌旗下首款车型FF 91的生产,其中包括车身装配关键设备。 FF原文写到“明珞装备从FF 91项目开始就深入参与其中,他们为FF 91量身定制了高效可靠的智能生产制造的供应商,我们很高兴能够有他们作为合作伙伴,生产制造FF 91这款即将重新定义超豪华电动车领域的车型。” 去年底,就有媒体曝光了法拉第未来(FF)工厂焊装生产线设备顺利出货的消息,并指出该批设备由广州明珞(MINO)提供。 算算时间,已经过去了将近两个月,即便是走海运,这批设备应该也早已顺利到达。
[汽车电子]
法拉第未来<font color='red'>接收</font>车身装配关键设备:来自中国
SCI中断接收
SCI 是全双工异步串行通信接口,主要用于 MCU 与其他计算机或设备之间的通信,几个独立的 MCU也能通过 SCI 实现串行通信,形成网络。 MC9S12XS128里有两个SCI(SCI0和 SCI1) 。设计 SCI 串口通信程序,主要是掌握八个寄存器,设置好初始化。 以下为SCI相关寄存器: SCIBDH, SCIBDL寄存器 IREN(红外调制模式使能位) = 1 时,使能 = 0 时,禁止 TNP :窄脉冲发射位 SBR :波特率设置位 IREN = 1 时,SCI baud rate = SCI bus clock / (16 x SBR ) IREN = 0 时,SCI baud rate = SCI bus
[单片机]
SCI中断<font color='red'>接收</font>
STM32单片机学习(12) 红外信号接收解码(外部中断)
本程序主要利用外部中断,实现红外遥控器信号接收解码,并利用串口通信把编码传至计算机显示 注: 请用质量好点的遥控器实验 用了劣质遥控器浪费了一天时间,数据位接收总是不完整,后来用宿舍空调遥控器就解码成功了 相关资料 STM32单片机学习(2) 外部中断 http://blog.csdn.net/leytton/article/details/38063335 STM32单片机学习(3) 串口中断通信 http://blog.csdn.net/leytton/article/details/38393553 STM32单片机学习(7) 串口通信printf重定向 http://blog.csdn.net/leytto
[单片机]
STM32单片机学习(12) 红外信号<font color='red'>接收</font>解码(外部中断)
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved