基于脉动阵列的FIR滤波器设计

发布者:电子科技爱好者最新更新时间:2007-11-27 来源: 现代电子技术关键字:逻辑  时序  频谱  冲激 手机看文章 扫描二维码
随时随地手机看文章

  1 引 言

  有限长冲激响应(FIR)滤波器在数字信号处理中是一种基本的处理单元。无限长单位冲激响应(IIR)数字滤波器的优点是可以利用模拟滤波器设计的结果,但其缺点是不具有线性相位性。图像处理以及数据传输都要求信道具有线性相位特性,FIR滤波器可以做成严格的线性相位,避免被处理信号产生相位失真,还可以具有任意的幅度特性。此外,FIR滤波器的单位冲激响应是有限长的,因而滤波器一定是稳定的。

  在数字滤波器的研究中,已经提出多种FIR滤波器的设计和实现方法,如并行结构、流水线结构、分布式结构等[1-3]。FIR滤波器计算量大,且要求实时实现。如何提高速度以满足信号处理的高效性和实时性一直是人们研究的重点和热点。脉动阵列是一种新型的流水线结构,所有处理单元是相同且全流水的,并且有模块化和规则化的特征,这对于硬件设计是很重要的。脉动阵列结构可以很好地满足高速实时信号处理的需要,提高数据的通过率及电路的执行速度。该结构结合了并行结构和流水线的优势,使FIR滤波器达到了更高的处理速度。

  数字滤波器现在大多在DSP芯片上实现[4]。随着集成电路技术的发展,现在已有多种专用DSP芯片用于实现滤波、FFT等运算。另外,FPGA内部的规整的逻辑块阵列,很适合实现脉动阵列这种高度并行的运算。Altera公司新推出的Stratix系列FPGA内部有丰富的逻辑阵列资源及高性能嵌入式DSP块,能够高效地实现数字信号处理功能[5]。

  本文首先介绍了FIR滤波器和脉动阵列的原理,然后设计了脉动阵列结构的FIR滤波器,画出电路的结构框图,并进行了时序分析,最后在FPGA上进行验证。结果表明,脉动阵列的模块化和高度流水线的结构使FIR滤波器在FPGA上获得了很好的性能,比串行结构的运算速度更快,呵以更好地满足数字信号处理中高效、实时的要求。

  2 FIR滤波器及脉动阵列原理

  2.1 FIR滤波器原理

  数字滤波器用于改变输入信号X(n)的频谱特性以满足某种特定的设计要求。一个因果的数字滤波器可以用它的单位冲激响应h(n)、传输函数H(z)或者差分方程来表达。其中单位冲激响应和传输函数描述了系统的时域和频域性质,差分方程则反映了实现该滤波器所需的运算。

  一个线性时不变因果滤波器可以用式(1)的差分方程描述:

  如果1≤k≤N时,ak=0,则:



  这就是一个M阶的FIR滤波器,是非递归运算。

  2.2 脉动阵列

  脉动阵列结构是1978年由Carneige-Mellon大学的H.T.Kung等人发展起来的一种专用处理器设计模型,是一种新的流水线结构,表示一种有节奏地汁算并通过系统传输数据的处理单元网络。这些处理单元规则地泵入泵出数据以维持规则的数据流[6]。由于其数据运算与传送方式类似于心脏或脉搏有节奏地跳动,因此被称为心动阵列或脉动阵列。利用脉动阵列可设计出一系列适合数字信号处理应用的模块化、规则且有效的运算结构。脉动阵列结构的基本特性如下:

  (1)脉动性

  数据在一个全局时钟的精确控制下,有节奏地经过计算和传递过程,最后通过网络。

  (2)模块性和规则性

  阵列由模块化的处理单元组成,各处理单元之间的互连方式均匀一致,并且计算网络可任意扩大。

  (3)空间局部性和时间局部性

  表现在数据从一个计算节点传递到下一个计算节点至少需要一个单元时间。

  (4)有效的流水线结构

  脉动阵列免除了形成数据流所需的控制开销。阵列内处理单元间的局部连接方式使阵列中负载均匀、连线极短,最大限度地减小了系统内部的通信延时,提高了处理单元的利用率,使整个阵列的系统性能得到充分发挥。

  脉动结构是将线性映射技术用于规则依赖图上进行设计的。依赖图的边表示优先约束。脉动阵列设计中的基本矢量有:

(1)投影矢量:

(2)处理器矢量:PT=(p1 p2)

(3)调度矢量:ST=(S1 S2)

(4)硬件利用率:HUE=1/│STd │

  3 FlR滤波器的脉动结构设计

  3.1 FIR滤波器的脉动阵列结构

  用调度不等式选择可行的调度矢量ST,并根据脉动结构的可行性限制条件选择投影矢量d和处理器空间矢量PT,然后用线性映射技术设计脉动列。

  选择投影矢量、处理器矢量和调度矢量如下:



  于是,节点IT=(i,j)被处理为:

  节点IT=(i,j)的执行时间为:

  硬件利用率:

  以五阶FIR滤波器为例:

  FIR滤波器的脉动结构设计框图如图1所示。

  其中,d0,d1,d2和d3作为延时单元,m0,m1,…,m4为固定乘数的乘法器,乘数分别为ω0,ω1,…,ω4。乘法器m0和加法器a0构成处理器P0;乘法器m1和加法器a1构成处理器P1;类似的,m4和a4构成处理器P4。5个处理器同时工作,x(n)输入后同时到达5个处理器,分别和权重ωi相乘后,经不同的延时相加得到结果y(n)。

  该设计框图很好地体现了2.2节提到的脉动阵列的4个基本特性。数据在网络中有节奏的输入、计算、传递并输出。该结构由5个相同的模块化处理器构成,容易扩展,可实现任意阶的FIR滤波器。数据的输入、和权重的相乘、中间结果的寄存、数据的输出各需要一个单元时问,但这几种操作可同时进行,不会互相干扰。该脉动阵列结构以高度的流水线方式运行。

  需要注意的是,在乘法器输出的时候需要对输出的数据进行一位扩展,以避免加法器的溢出问题。

  3.2 时序分析

  该结构的空问时间表示如图2所示。横轴为时间轴,纵轴为处理器轴。图中的每一行对应一个处理器。可以看到在时间轴的某一点上,输入数据x(n)在同一时间剑达所有处理器,即输入"广播";在处理器轴的某一点上,权重ωi在各处理器中处于相同的空间坐标,因此权重"保持";而输出数据y(n)在不同的空间和时间得到,所以输出"移动"。该FIR滤波器为输入广播、权重保持、输出移动型的脉动阵列结构。

  借助于脉动阵列技术,输入和输出之间的处理可以同时进行,因此,总的执行时间变得最小。对该结构进行时序分析,如图3所示。在第一个时钟周期x(0)送到各处理器,和权重分别相乘后在第二个时钟周期得到y(0)=ω0x(0),在此同时数据x(1)已经输入;第三个时钟周期输入x(2),在处理器P0得到ω0x(1),此时处理器P1的结果ω1x(0)经一级延时后和P0的结果相加得到y(1)=ω0(1)+ω1x(O)。同理,第四个周期得到y(2)=ω0x(2)+ω1x(1)+ω2x(0),第五个周期得到y(3)=ω0x(3)+ω1x(2)+ω2x(1)+ω3x(O)…。

 

  4 FPGA验证

  以一个输入输出均为8 b的五阶FIR滤波器为例,对该脉动阵列结构的FIR滤波器在FPGA上进行验证。目标器件选用Stratix系列器件,编译软件为QuartusⅡ4.2。

  Stratix系列器件是Altera公司推出的新型FPGA,其内部有丰富的嵌入式存储器、优化的数字信号处理(DSP)块和高性能I/O能力。Stratix器件是设计复杂的高性能系统的理想选择。StratiX器件使用DSP块实现大计算量应用所需的大数据吞吐量。DSP块由硬件乘法器、加法器、减法器、累加器和流水线寄存器组成[6]。从图1中可以看出,每个处理器单元由一个乘法器和一个加法器构成,这种结构很适合用FPGA内部的DSP块实现。

  实验结果如表1所示。为了便于比较,使用相同的器件,还给出了串行结构FIR滤波器的实验结果。在串行结构中,每次计算1个x(n),需要3个时钟周期。脉动阵列结构每次计算5个x(n),需要5个时钟周期。每个x(n)为8 b数据。运算速度可以由下面的公式得出:

  运算速度=(每次处理数据长度/运算耗用的时钟周期数)×系统时钟频率

  从表中可以看出,在占用逻辑单元的数量上二者基本相当,虽然串行结构只占用了一个DSP块,脉动阵列结构占用了5个,但串行结构的最高运算速度只能达到284.93 Mb/s,脉动阵列可以达到1 840.32 Mb/s。显然脉动阵列结构更具优势,可以更好地满足数字信号处理中高效、实时的要求。本文基于脉动阵列技术,设计了高效的FIR滤波器,具有模块化和流水线的结构,并充分利用了FPGA资源,达到了较高的工作频率。

  5 结 语

  FIR滤波器是数字信号处理中的一种基本运算,有着广泛的应用。基于脉动阵列结构,本文设计了高效的FIR滤波器。模块化和高度流水线的结构使得其在FPGA上获得了较好的性能,完全可以满足系统高效、实时处理的要求,提高了系统运算速度并充分合理地利用了FPGA资源。另外,由于脉动阵列自身的特点,各级结构相同,方便扩展,可以实现任意阶的FIR滤波器。

关键字:逻辑  时序  频谱  冲激 引用地址:基于脉动阵列的FIR滤波器设计

上一篇:32位单精度浮点乘法器的FPGA实现
下一篇:WTB网络HDLC在FPGA中的实现

推荐阅读最新更新时间:2024-05-02 20:38

I2C总线时序模拟(一)-加深理解总线协议
view plain copy print ? #include reg52.h #define uchar unsigned char sbit sda=P2^0; sbit scl=P2^1;//用单片机的两个I/O口模拟I2C接口 uchar a; *************************************************************************** void delay()//简单延时函数 { ;; } *************************************************************
[单片机]
利用MSP430处理器实现音频频谱分析仪的设计
1.前言 在实际的广播电视发射工作中,新的发射机的进场测试,发射机的日常指标测试等都涉及了音频的测试。本文设计的音频频谱分析仪就是从信号源的角度出发,测量音频信号的频谱,从而确定各频率成分的大小,为调频广播的各项音频指标的提供参考。 在本文中主要提出了以MSP43处理器为核心的音频频谱分析仪的设计方案。以数字信号处理的相关理论知识为指导,利用MSP430处理器的优势来进行音频频谱的设计与改进,并最终实现了在TFT液晶HD66772上面显示。 2.频谱分析仪设计原理 由于在数字系统中处理的数据都是经由采样得到,所以得到的数据必然是离散的。对于离散的数据,适用离散傅立叶变换来进行处理。 快速傅里叶变换,是离散傅里叶变换的快
[单片机]
利用MSP430处理器实现音频<font color='red'>频谱</font>分析仪的设计
详析数字I/O和逻辑分析仪常用术语
  本文介绍了数字I/O和逻辑分析仪的常用术语和定义。   1.抖动   抖动是指与事件理想时序的偏差,并通常基于参考信号的过零点进行测量。 抖动通常来自于串扰、同步开关输出和其它定期发生的干扰信号。 由于抖动会随时间变化,抖动的测量和量化既可以是秒级范围内视觉估计,也可以是基于统计的测量,比如基于标准偏差随时间变化的统计测量。      图1.数字信号抖动示例   2.偏移   对于定时(动态)生成,通道间偏移定义为两个数据通道对应边沿之间的时间差。 例如,如果两个数据通道均设置为在特定采样时从低电平转换为高电平,两个通道上升沿之间的时间差就是两个通道之间的通道间偏移。   对于动态采集,通道间偏移定义为每个
[测试测量]
详析数字I/O和<font color='red'>逻辑</font>分析仪常用术语
基于CPLD技术的数字时序控制电路设计
1、引言   六自由度电磁敏感定位系统作为一种新型的跟踪定位装置,可实时地确定目标的六个参数,已在机载火控系统(头盔瞄准具)、精密医疗器械、单兵作战模拟训练中获得广泛应用 。该跟踪系统由正弦信号发射电路、敏感信号接收电路组成的硬件和从敏感接收数据中求解目标参数的算法程序两部分组成,定位计算精度受制于上述两部分的误差。目前,在不考虑环境因素影响的情况下,算法误差已达到小于1毫弧的水平,因此,硬件电路的误差成为制约系统定位精度的主要因素。根据工作原理,该系统采取按时序依次激励发射天线,从而根据敏感天线接收信号组成接收矩阵计算目标参数。然而,作为时序控制电路的模拟器件,存在无法避免的温度漂移和时间漂移问题,从而大大影响了时序发射的精度
[工业控制]
基于CPLD技术的数字<font color='red'>时序</font>控制电路设计
领先的无线通信公司在CTIA大会上对超移动宽带技术表示支持
-行业领袖在CTIA特别座谈会上展示UMB的优势- 美国佛罗里达州奥兰多市,2007年3月27日 ——CDMA发展组织(CDG)今天公布了支持超移动宽带技术(Ultra Mobile BroadbandTM,UMBTM)解决方案的无线行业领袖的名单。在2007年美国无线通信展(CTIA Wireless 2007)上,来自阿尔卡特-朗讯、日立、华为、LG电子、摩托罗拉、北电、高通及中兴等公司的高管将与CDG共同出席CDG的首次UMB技术研讨会——“超移动宽带技术:高性能移动OFDMA解决方案”。会议于3月27日(周二)的1:30-5:30举行。 CDG执行董事佩里.拉法格表示:“无线产业界对于发展UMB技术充满热情;其前沿的
[焦点新闻]
使用频谱仪和近场探头测试解决终端产品的辐射杂散困扰
随着5G时代的推进,智能终端产品作为宽带射频应用最大的消费市场面临着一系列开发与验证的问题。其中,越来越小的设计空间与电磁辐射杂散性能之间的矛盾,将是商业研究人员开发和验证中面临的巨大挑战。若要以更高的精度、更强的自信探索开创性的概念,来推动现有技术发展、以创新创造革命、将 5G 愿景转变为现实的过程中,我们不得不在工作中选择更为适合我们的调试、测试解决方案。 克服这些难题需要对智能终端设备进行有效的测试和测量,这样能确保准确地生成和分析信号,从而正确地测试和测量通信链路(如发射机和接收机)。采用的信号生成和分析解决方案应当提供快速的测量时间和切换速度,并且具有可扩展性,让测试工具可以适应用户不断变化的测试需要。另外解决
[测试测量]
使用<font color='red'>频谱</font>仪和近场探头测试解决终端产品的辐射杂散困扰
采用全数字中频技术的DSA1030A频谱分析仪的设计
随着模数转换器、高性能微处理器和可编程器件等器件和技术近年来突飞猛进的发展,频谱仪也从模拟中频时代进入全数字中频时代。全数字中频技术的采用使频谱仪的多项指标得到显著提升。北京普源精电(RIGOL)推出的DSA1030A频谱分析仪采用的就是全数字中频技术,成为为数不多的掌握该技术的频谱仪供应商之一。 原理及设计对比 为了便于说明数字中频和模拟中频对于频谱仪的影响,我们先简单分析一下这两种类型频谱仪实现的原理。图1就是典型的模拟中频频谱仪的原理框图。射频信号进入频谱仪后首先经过衰减器,将信号幅度调节到混频器最佳工作范围内,然后通过频谱仪内部的变频器将射频信号变到相对较低的中频,中频滤波实现不同带宽的选择后,包络检波后得到视频信号,
[测试测量]
采用全数字中频技术的DSA1030A<font color='red'>频谱</font>分析仪的设计
频谱分析仪的性能参数
一、相位噪声 虽然我们看不到频谱分析仪本振系统的实际频率抖动,但仍能观察到本振频率或相位不稳定性的明显表征,这就是相位噪声 (有时也叫噪声边带)。没有一种振荡器是绝对稳定的,它们都在某种程度上受到随机噪声的频率或相位调制的影响。如前所述,本振的任何不稳定性都会传递给由本振和输入信号所形成的混频分量,因此本振相位噪声的调制边带会出现在幅度远大于系统底噪的那些频谱分量周围 (图 1-1)。显示的频谱分量和相位噪声之间的幅度差随本振稳定度而变化,本振越稳定,相位噪声越小。它也随分辨率带宽而变,若将分辨率带宽缩小 10 倍,显示相位噪声电平将减小10dB。 图 1-1 只有当信号电平远大于系统底噪时, 才会显示出相位噪声 图1-2
[测试测量]
<font color='red'>频谱</font>分析仪的性能参数
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved