基于模糊控制的迟早门同步器及其FPGA实现

发布者:平和的心情最新更新时间:2008-11-28 来源: 电子技术应用关键字:FPGA  迟早门 手机看文章 扫描二维码
随时随地手机看文章

  在数字通信系统中,必须以符号速率对解调器的输出进行周期性地采样.为此,接收器需要一个采样时钟信号,这个时钟信号的频率和符号速率相等,相位则必须保证采样时刻是最佳的.在接收器中获得这个采样时钟的过程被称为符号同步或符号定时恢复.迟早门(Early-late Gate)是实现符号同步的重要方法之一,广泛运用于各种数字通信系统中.本文提出的基于模糊控制的迟早门与传统的迟早门相比,具有同步速度快、过冲小、相位抖动小等优点.在其FPGA实现中,采用了离线计算实时查表控制的方法,并针对实际应用的情况,将控制表转化为逻辑方程,进一步简化了电路.

  1 迟早门简介

  一阶闭环平衡双积分型迟早门结构如图1所示.

基于模糊控制的迟早门同步器及其FPGA实现

  早门累加器和迟门累加器分别在两个连续的半符号周期内对输入数据的采样值进行累加,即计算前半符号周期和后半符号周期内接收到的信号的能量,它们与一个减法器共同构成了相位检测器.为了保证相位检测的有效性,采样时钟的频率必须是符号速率的偶数倍,一般至少要为8倍.如果接收到的信号为连续的0或1,那么相位误差Δe为零;如果接收到的信号中0、1交替出现,那么相位误差Δe可能不为零.误差累加器和比较器构成了一阶低通环路滤波器,相位误差累加值与一个门限值比较,产生的差值控制本地生成的数据时钟相位.相位误差累加值的符号决定数据时钟的相位是前移还是后移,每次相位调整的幅度是固定的,调整的门限值也是固定的.控制逻辑根据本地生成的数据时钟决定早门累加器、迟门累加器和误差累加器的工作时序.

  若迟早门的采样周期为Ts,数控振荡器的调整幅度为d,则由于迟早门相位调整造成的接收数据时钟的相位抖动为d·Ts.如果调整幅度d较大,则数据时钟可以很快地同步上,但是相位抖动就会比较大.如果调整幅度d较小,则相位抖动较小,但是数据时钟可能需要较长的时间获得同步.[page]

  2 迟早门的模糊控制设计

  同步速度和相位抖动是制约迟早门性能得以提高的主要因素.为了实现较小相位抖动要求下的快速同步,可以采用自适应技术,在相位捕捉阶段使用较大的调整幅度,在相位跟踪阶段使用较小的调整幅度.本文提出了一种基于模糊控制的方法,同样可以达到自适应的效果,而且鲁棒性好、易于实现.

  基于模糊控制的平衡双积分型迟早门结构如图2所示.

  在结构上,基于模糊控制的迟早门用两个相位误差寄存器取代了传统迟早门的相位误差累加器,用一个两输入、单输出的模糊控制器取代了传统迟早门的简单比较器.该模糊控制器的输入为相位误差累加值的当前值Δe(n)和前一次计算值Δe(n-1),输出为数控振荡器的调整幅度值d.用三角形隶属度函数将输入变量Δe模糊分割为负大(NB)、负小(NS)、零(ZR)、正小(PS)、正大(PB)五种取值,模糊分割的图形表示如图3所示.输出变量d被模糊分割为负大(NB)、负中NM 、负小(NS)、零(ZR)、正小(PS)、正中PM 、正大(PB)七种取值,模糊分割的图形表示如图4所示.

  模糊控制器的控制规则表如表1所示.

  表1 模糊控制规则表相位误差Δe(n-1)

  

相位误差Δe(n) DCO调整幅度d NB NS ZR PS PB
NB PB PB PM PM PS
NS PB PM PM PS PS
ZR PM PS ZR NS NM
PS NS NS NM NM NB
PB NS NM NM NB NB

  由于模糊控制器输入变量模糊分割的相邻两个取值具有50%的交叠,所以除个别点(0、±a/2、±a)以外的精确输入值都对应两条控制规则.模糊控制器输出变量的清晰化采用重心法.

  3 模糊控制迟早门的FPGA实现

  在实际运用中,需要对接收到的1Mbps高斯最小频移键控(Gauss-MSK)信号进行符号同步,这就要求模糊控制单元的推理速度至少为1M FLIPSFuzzy Logical Inferences per Second .显然,对这样的推理速度指标,用软件在一般的通用处理器上是很难实现的.因此,模糊控制迟早门必须使用硬件来实现.FPGA是一种廉价的半定制大规模集成电路,它的开发工具可以在PC机上运行.FPGA具有密度高、结构灵活、设计时间短和可编程等优点,非常适合用于模糊迟早门的硬件验证.

基于模糊控制的迟早门同步器及其FPGA实现

  一个典型的模糊控制器通常由包含控制规则的知识库、模糊推理单元以及与外部接口的模糊化单元、清晰化单元组成.自1985年以来人们在模糊控制器的硬件实现方面已经做了很多工作,用数字电路实现模糊控制器已经有非常成熟的设计方案.这些方案将模糊控制器的四个基本单元用数字电路一一实现,模糊推理速度也可以达到1M FLIPS以上.但是在模糊控制迟早门中,模糊控制器只是其中的一部分,迟早门也只是整个接收机中的一个单元.如果采用通用的设计方案,最后实现的模糊控制迟早门占用FPGA的逻辑单元必然很多,致使整个接收机占用的芯片面积很大,而且模糊控制器在迟早门中的功能比较单一,无法实现复用.因此,模糊控制迟早门中的模糊控制器不适于用通常的设计方案.为了减小占用的芯片面积,模糊控制器采用了如下的设计思路:首先,确定输入输出精确量的比特数;然后离线计算模糊控制表,即获得一张输入输出精确量之间的真值表;最后,将这张真值表化简为逻辑方程.这样,模糊控制器就可以用简单的组合逻辑来实现.获得逻辑方程后,可以用硬件描述语言编写程序,然后在FPGA开发系统中对编好的程序和描述迟早门其它部分的程序进行编译.如果编译成功,FPGA开发系统会生成一个FPGA芯片的配置文件,将这个配置文件通过配置电缆下载到芯片里,就能最终得到一个实现模糊控制迟早门的芯片.

  基于模糊控制的迟早门已经在Altera公司的EP20KE200EFC484-2X芯片上得到了成功验证,并运用到Bluetooth基带处理器中.Bluetooth每个基带数据帧头部只有4个供同步用的比特,也就是说,基于模糊控制的迟早门可以在4个比特的时间内实现同步,无需增加额外的同步比特.

  基于模糊控制的迟早门由于在控制回路中引入了模糊逻辑,从而在迟早门的同步速度和相位抖动之间取得了很好的折衷,其性能要明显优于传统的迟早门.在模糊控制迟早门的FPGA实现中采用了离线计算和将控制表转化成逻辑方程的方案,在不影响模糊控制功能的情况下尽可能地降低了由于引入模糊控制而导致的硬件逻辑资源的增加.

关键字:FPGA  迟早门 引用地址:基于模糊控制的迟早门同步器及其FPGA实现

上一篇:卷积码+QPSK的中频调制解调系统的FPGA
下一篇:基于FPGA的LCD&VGA控制器设计

推荐阅读最新更新时间:2024-05-02 20:43

基于Xilinx FPGA的千兆以太网及E1信号的光纤传输
目前,随着多媒体应用的普及,千兆位以太网已经发展成为主流网络技术。大到成千上万人的大型企业,小到几十人的中小型企业,在建设企业局域网时都会把千兆位以太网技术作为首选的高速网络技术。千兆位以太网技术甚至正在取代ATM技术,成为城域网建设的主力军。 E1接口采用PCM编码方式。符合G.703标准,通过75Ω同轴电缆或120Ω双绞线进行非对称或对称传输。在电信网中有着广泛应用。 将高速的千兆位以太网信号与低速的E1信号结合起来,实现以太网与E1信号的复用。既满足了用户对大带宽、高容量数据的传输要求,又提供了E1信号接入功能,实现电话业务及其他专用通信系统的接入功能。 系统构成 整个系统主要由E1接口单元、以太网接口单元、FPGA单元以
[单片机]
基于Xilinx <font color='red'>FPGA</font>的千兆以太网及E1信号的光纤传输
Microsemi公司开发的RTAX-DSP FPGA已获准用于航空领域
据报道,Microsemi公司SoC产品集团(原Actel公司)开发的RTAX-DSP现场可编程门阵列(FPGA)器件已获得合格制造商清单(QML)V类和Q类资格认证,这意味着该FPGA器件获准用于卫星、载人飞船和其他空间应用。   公司官方表示,Microsemi的抗辐射QML-V FPGA在不同程度上能够承受空间自然辐射影响,并对每个特定晶片都进行2,000小时的寿命测试,对每个特定组件都进行破坏性物理分析。   RTAX-DSP FPGA将复杂数字信号处理(DSP)功能集成到单一设备,满足高效信号处理时的耐辐射需求。RTAX-DSP FPGA具有受保护的嵌入式DSP乘法累加运算模块,可抵御空间环境单粒子效应辐射。该DSP
[嵌入式]
FPGA中基于信元的FIFO设计方法
设计工程师通常在FPGA上实现FIFO(先进先出寄存器)的时候,都会使用由芯片提供商所提供的FIFO。但是,由于其通用性使得其针对性变差,某些情况下会变得不方便或者将增加硬件成本。此时,需要进行自行FIFO设计。本文提供了一种基于信元的FIFO设计方法以供设计者在适当的时候选用。这种方法也适合于不定长包的处理。 FIFO在数字通讯芯片领域中有两个主要的作用,缓冲数据和隔离时钟。对于FIFO的设计,最关键的问题是如何实现RAM的读写双方的信息交换。一般情况下,设计者都直接调用厂商为自己的FPGA专门打造的FIFO核。基本单元是FIFO所使用的RAM的一次读写操作的最小单元,如一个字节,一个字或者是一个双字。所谓操作粒度,即FIFO的读
[嵌入式]
FPGA与DSP的高速通信接口设计与实现
在雷达信号处理、数字图像处理等领域中,信号处理的实时性至关重要。由于FPGA芯片在大数据量的底层算法处理上的优势及DSP芯片在复杂算法处理上的优势,DSP+FPGA的实时信号处理系统的应用越来越广泛。ADI公司的TigerSHARC系列DSP芯片浮点处理性能优越,故基于这类。DSP的DSP+FPGA处理系统正广泛应用于复杂的信号处理领域。同时在这类实时处理系统中,FPGA与DSP芯片之间数据的实时通信至关重要。 TigerSHARC系列DSP芯片与外部进行数据通信主要有两种方式:总线方式和链路口方式。链路口方式更适合于FPGA与DSP之间的实时通信。随着实时信号处理运算量的日益增加,多DSP并行处理的方式被普遍采用,它们共享总线以
[嵌入式]
基于IPTV系统中的FPGA供电问题解决方案
  目前越来越多的家用电器从低速的拨号上网向宽带互联网接入或互联网协议电视(IPTV)转移,尤其是IPTV有望在中国获得快速的发展。比较而言,IPTV的基础设施成本相当低,因为这种方法不需要铜轴电缆,而是采用DSL或宽带链接和机顶盒将节目流传送到家用电器。      现在的可编程门阵列(FPGA)已经被证明是这种平台的理想选择,因为它们提供了快速改变市场需求的灵活性。FPGA的电源需求通常很复杂,因为FPGA有多达三种供电要求,为了实现可靠的系统性能,必须对这些要求排序。       内核电压      内核电压轨通常设定成VCCINT,为FPGA逻辑供电。要求的电流从几百毫安到几十安培,具体大小取决于时钟频率和所用的门数。因为该
[嵌入式]
基于IPTV系统中的<font color='red'>FPGA</font>供电问题解决方案
基于ARM的FPGA加载配置实现
0引言 基于SRAM工艺FPGA在每次上电后需要进行配置,通常情况下FPGA的配置文件由片外专用的EPROM来加载。这种传统配置方式是在FPGA的功能相对稳定的情况下采用的。在系统设计要求配置速度高、容量大、以及远程升级时,这种方法就显得很不实际也不方便。本文介绍了通过ARM对可编程器件进行配置的的设计和实现。 1 配置原理与方式 1.1配置原理 在FPGA正常工作时,配置数据存储在SRAM单元中,这个SRAM单元也被称为配置存储器(Configuration RAM)。由于SRAM是易失性的存储器,因此FPGA在上电之后,外部电路需要将配置数据重新载入到片内的配置RAM中。在芯片配置完成后,内部的寄存器以及I/O管脚必须
[单片机]
基于ARM的<font color='red'>FPGA</font>加载配置实现
业内首个在单片FPGA上实现的全面视频分析套件
全球的安全系统已经由于视频监控的出现和演进而得到了革命性的改变,它利用相机技术改善了很多很多地方的安全。随著相机和软件技术的改进,视频监控已经从模拟(VCR)向数字(DVR硬盘录像机)和基于IP的互联网流媒体视频发展,这使得你现在可以通过互联网每天24小时传输视频信号。 近年来,恐怖活动的增加已经使得视频监控技术成为老百姓心目中重要的和息息相关的公共意识。最新的IMS研究报告说,对可靠视频监控的市场需求正在以38%的复合年增长率增长,并将在2011年实现40亿美元的市场价值。 最近,数字视频技术已被广泛应用于各种工业应用,如零售、教育、医疗保健和交通环境。此外,视频监控也已广泛应用于街道和公路,以提高公众安全
[嵌入式]
基于FPGA的高精度相位测量仪的设计
  引言   随着集成电路的发展,利用大规模集成电路来完成各种高速、高精度电子仪器的设计已经成为一种行之有效的方法。采用这种技术制成的电子仪器电路结构简单、性能可靠、测量精确且易于调试。本文采用Altera CycloneII系列FPGA器件EP2C5,设计了高精度相位测量仪。测量相位差所需的信号源在FPGA内部运用DDS原理生成,然后通过高速时钟脉冲计算两路正弦波过零点之间的距离,最后通过一定的运算电路得到最终相位值,测相精度为1°。 图1 相位测量仪硬件结构图 图2 基于DDS的数字移相信号发生模块框图 图3 控制模块顶层原理框图 图4 相位测量模块原理框图 系统硬件设计   该基于FPGA的相位测量仪,硬件
[测试测量]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved