基于FPGA的通信系统基带验证平台的设计

发布者:影子猎人最新更新时间:2010-03-16 来源: 国外电子元器件关键字:FPGA  通信系统  基带验证平台 手机看文章 扫描二维码
随时随地手机看文章

  1 引言

  在通信领域尤其是无线通信方面,随着技术不断更新和新标准的发布,设计者需要一个高速通用硬件平台来实现并验证自己的通信系统和相关算法。FPGA(现场可编程门阵列)作为一种大规模可编程逻辑器件,体系结构和逻辑单元灵活、集成度高、适用范围宽,并且设计开发周期短、设计制造成本低、开发工具先进并可实时在线检验,广泛应用于产品的原型设计和产品生产。

  与传统的DSP(数字信号处理器)或GPP(通用处理器)相比,FPGA在某些信号处理任务中表现出非常强的性能,具有高吞吐率、架构和算法灵活、并行计算、分配存储以及动态配置等优势,因此非常适合用于设计验证高速通信系统的基带处理部分。

  本文提出一种基于Xilinx公司Virtex-Ⅱ系列300万门级FPGA器件的通信系统基带设计验证平台,适用于高速通信系统基带的原型设计和相关算法的实现,并已成功应用于基于IEEE 802.1la的OFDM基带系统设计。

  2 系统平台组成和功能

  通信系统基带设计验证平台主要有以下组成部分:电源部分、FPGA和外围电路、时钟和复位电路以及模数和数模转换电路。平台整体框图见图1。

平台整体框图

  各单元模块的功能如下:

  •   电源部分:负责给FPGA和其他电路供电。
  •   FPGA和外围电路:主要由两片300万门级的FPGA器件构成,配置电路用于启动后完成对FPGA的自动配置。其他主要外围电路还有存储器(SRAM和SDRAM)及串口通信电路。
  •   时钟和复位电路:为FPGA提供系统时钟和复位信号。
  •   模数和数模转换电路:主要是1片用于将数字信号转换成模拟信号的ADC,以及l片将模拟信号转换成数字信号的DAC

  整个系统平台的工作原理是:两片FPGA分别设计成发射机(图l中的FPGA_TX)和接收机(图l中的FPGA_RX)。测试向量进入发射机后,经过基带编码和调制,通过DAC转换成基带模拟信号。ADC及接收电路接收电缆传输过来的信号,将其转换成数字信号,经接收机解调和解码后还原为原始数据,并与测试向量比较,获得误码率等性能指标。

  3 功能单元的电路实现

  3.1 FPGA及其配置电路

  VirtexⅡ系列FPGA是Xilinx公司推出的针对高性能可编程解决方案的首款平台级FPGA器件。Virtex-Ⅱ系列器件采用先进的O.15 μm/0.12 μmCMOS 8层金属混合工艺设计,内核电压为1.5 V,根据输入输出参考电压的不同设计可支持多种接口标准,内部时钟频率可达420 MHz,被认为是高速低耗的理想设计。

  Virtex-Ⅱ系列器件特性:

  (1)内部时钟频率可达420 MHz,输入输出速率可高达840MHz。

  (2)内嵌18x18专用硬件乘法电路和超前进位逻辑链(Look Ahead Carry)实现高性能的算术处理功能。

  (3)高性能的内部存储器Select RAM,每个块存储器容量为18 KB。最多提供3 MB的块存储资源以及1.5 MB的分布式存储器资源。

  (4)多达12个数字时钟管理模块(Digital Clock Manager,DCM)和16个全局时钟多路复用缓冲器,提供了灵活的系统时钟解决方案。

  (5)Virtex-Ⅱ采用数控阻抗匹配技术(Digital Controlled Impedance,DCI),可减小因阻抗匹配问题而造成的系统不稳定,并减小PCB因终端匹配电阻导致的复杂性。

  本平台采用两片300万门的Virtex-Ⅱ FPGA器件,型号为XC2V3000C,从兼容性和扩展性考虑,选用FFl152封装,该封装与XC2V4000/6000/8000的FPGA引脚兼容,便于系统升级。

  Virtex-ⅡFPGA的配置信息存储于SRAM中,掉电后配置信息丢失,上电后需要重新配置下载。Virtex-Ⅱ系列器件配置有5种模式,JTAG/Botmdarv Scan、Master Scrial、Slave Serial、Master SelectMAP、Slave SelectMAP。其中Master SelectMAP和MasterSerial需要使用Xilinx专用的PROM。 [page]

  本设计采用JTAG/Boundary Scan配置模式,主要通过四个专用配置信号线完成所有配置任务。提供两种配置方式,一是在线下载配置,通过下载电缆将FPGA的JTAG口与计算机并口相连,使用软件完成在线下载。另一种是采用SystemACE方案,上电后,通过SystemACE控制器读取CF存储器中的配置文件,通过JTAG配置相连的FPGA器件。

  SystemACE CompactFlash(CF)使用基于CFACompactFlash标准的存储器,由CompactFlash存储模块和ACE控制器组成。ACE控制器具有内置的控制逻辑,可以通过任何一个ACE控制器接口(CompactFlash接口、CFGJTAG接口、TESTJTAG接口和系统微处理器接口)对目标FPGA链进行配置。其中CompactFlash接口提供对CompactFlash存储卡的支持。单片Virtex-ⅡFPGA所需的配置数据大小为300 Kbit-29.O Mbit,这意味着使用一个Svs-temACE CF方案可以配置超过250片最大容量的Virtex-Ⅱ系列FPGA。设计者可以根据需要灵活地改变ACE Flash的密度。

  SystemACE配置示意图如图2所示。完成FP-GA设计后,通过软件生成所设计的下载配置文件,通过CF卡读写器将文件置于CF存储卡中。当平台上电后,ACE控制器读取CF卡中的配置文件,通过JTAG链将数据下载到各FPGA,完成自动配置。也可以通过JTAG下载电缆连接TEST JTAG接口,直接对FPGA进行在线配置。

SystemACE配置示意图

  3.2 时钟电路和复位及电压监视电路

  本平台采用两个相互独立的有源晶体振荡器提供20 MHz时钟,分别作为接收机和发射机的时钟源。由于板上多处地方需要20 MHz时钟(如ADCDAC),而仅靠晶体振荡器供给时钟除导致驱动力较弱外,还可能会产生较大时钟偏移或抖动。选用时钟驱动器IDT74FCT38074为系统提供时钟,这是一款3.3 V供电,CMOS工艺的1驱4时钟驱动器,输入时钟最高为166 MHz,同时提供4路低偏移同相时钟。通过两片IDT74FCT38074,分别为接收机和发射机各个模块提供精确时钟。输入时钟进入FPGA后又可以通过DCM的分频倍频处理,为FP-GA内部各个功能模块提供所需的时钟。

  在Virtex-Ⅱ器件内部,所有DCM模块通过时钟多路复用器逻辑分配到器件内部。所提供的16个全局时钟缓冲器可实现16个时钟域的控制,保证了DCM模块的时钟输出具有最小的传输延迟(Skew)。

  复位及电压监视电路采用MAX708SCPA,提供上电自动复位及手动复位。MAX708SCPA的PFI引脚为监视电压输入端,当PFI输入电压低于1.25 V时,PFO引脚输出低电平表示电压过低,本设计中用于监视FPGA 1.5 V内核电压。开关按钮S8提供手动复位。其电路示意图如图3所示。

电路示意图

  3.3 数模和模数转换电路

  本平台用于验证通信基带系统,需要将发射机输出的I路、Q路信号通过数模转换器(DAC)转换成模拟信号,接收机则通过模数转换器(ADC)将接收信号转换成数字信号。本平台设计采用的ADC和DAC分别为ADI公司的AD9238和AD9765。

  AD9238是双通道12位ADC。速度等级分为20MS/s、40MS/s和65MS/s。功耗为180mW~600mW,适用于要求低功耗和较小PCB面积的应用。AD9238的信噪比(SNR)为70 dB,无杂散信号动态范围(SFDR)为85 dBc。带有片内宽带差分采样保持放大器(SHA),允许用户选择多种输入范围和失调电压,包括单端输入。AD9765是双端口、高速率、双通道、12 bit的CMOS数模转换器(DAC)。它集成了2个高性能的12 bit TxDAC。更新速率可达125 MS/s,无杂散信号动态范围(SFDR)为75 dBc,O.1%的增益偏移匹配率。输出为差分电流、满幅度为20mA。[page]

  本设计中,AD9238工作在2Vp-p差分工作模式,采用内部参考电压,两通道工作在共享电压参考模式。输入差分幅度为2 V。信号时钟输入可以采用时钟驱动器的20MHz输出或由FPGA提供,最高采样率为40 MS/s。AD9238的两通道选择AD8138作为运放驱动器,为ADC提供差分输入信号。AD9765工作在双端口模式,两通道增益控制可分别调整,采用内部l.2 V参考电压。时钟输入也可以采用时钟驱动器的20 MHz输出或由FPGA提供。AD9238和AD9765与FPGA的连接示意图分别如图4和图5所示。

AD9238和AD9765与FPGA的连接示意图

  3.4 电源电路

  本系统正常工作需要两种供电电压。一种为FPGA器件的内核电压1.5 V;另一种为FPGA器件的输入输出接口电压3.3 V,该电压同时还用于其他器件供电。

  本设计采用适合FPGA应用的低电压、大电流线性稳压器(LDO)供电方案。电源输入采用标准的ATX电源接口,可以由ATX电源供电,其中+12 V输入直接给风扇供电,用于FPGA散热。+5 V输入通过Tl公司的TPS75533和TPS75415分别转换为3.3 V和l.5 V电压输出。TPS75533是一款最低压差可为250 mV的LDO,可提供3.3 V,5 A输出。TPS75415可提供1.5 V,2 A输出,其快速瞬态响应可有效改善系统性能。LDO采用线性调节原理,输出纹波很小,外围电路简单,只要求外接输入和输出电容即可工作。缺点是电压转换效率不高,发热量大,对散热控制方面要求较高。TPS75533采用TO-220封装,可以通过背部散热片有效散热,而TPS75415采用PowerPADTM的TSSOP小封装,在提供2W散热功率,提高散热性的同时节省了占用面积。 [page]

  3.3 V和1.5 V电压之间加稳压二极管和肖特基二极管构成的保护电路,保证FPGA的内核电压与接口电压之差在一定范围内,防止器件损坏。

  4 OFDM基带系统验证平台设计

  基于FPGA的通信系统基带设计验证平台非常适用于高速无线通信系统的基带设计。采用该平台可验证基于IEEE 802.1la的OFDM基带系统的简化原型设计。设计框图如图6所示。

设计框图

  经验证,该平台能实现OFDM原型机的发送和接收功能,并能有效验证同步和信道估计算法的实际性能。

  5 结束语

  基于FPGA的通信系统基带设计验证平台采用大容量、高性能的FPGA器件,为通信系统的基带设计提供了一个有效的硬件实现平台。基于FPGA的实现和验证与计算机仿真相结合,将大大加速通信系统基带部分的快速原型设计,极大地方便了对实时性和运算量有较高要求的各类算法的验证。

关键字:FPGA  通信系统  基带验证平台 引用地址:基于FPGA的通信系统基带验证平台的设计

上一篇:基于DSP的高速激光标记控制系统设计
下一篇:Flash外部配置器件在SOPC中的应用

推荐阅读最新更新时间:2024-05-02 21:01

采用StratixIVGTFPGA实现100G光传送网
  供应商、企业以及服务提供商认为100G系统最终会在市场上得到真正实施。推动其实施的主要力量是用户持续不断的宽带需求。各种标准组织正在制定传送网和以太网以及光接口100G标准。对于希望在标准发布之前,先期设计100G系统的开发人员而言,FPGA由于自身的灵活性而发挥了非常重要的作用。Altera的StratixIVGTFPGA在40-nm技术节点提供集成11.3-Gbps收发器,解决了100G传送网和100G以太网遇到的问题。这些FPGA是设计100G系统的理想平台,提供高性价比并且有助于产品迅速面市的解决方案。   引言   目前的网络载荷不断增大,供应商很难实施并管理他们的高级系统。为适应对带宽不断增长的需求,光传送网(
[嵌入式]
采用StratixIVGTFPGA实现100G光传送网
黄仁勋:游戏、AI以及数据中心业务都是大生意
网易科技讯11月11日消息,据VentureBeat报道,芯片巨头英伟达已经公布了截至10月31日的最新季度财报。英伟达本季度营收达到26亿美元,其中15亿美元来自于游戏个人电脑的显卡。但该公司对人工智能(AI)芯片的投资正在获得回报,数据中心营收也首次超过5亿美元。 英伟达首席执行官黄仁勋(Jensen Huang)表示,他的公司7年前开始投资AI,其最新AI芯片是数千名工程师多年工作的成果。他说,这帮助公司在AI领域占据优势,而其他竞争对手也在争相跟上。在最新财报电话会议结束后,黄仁勋接受了科技媒体VentureBeat的采访,并讨论了从无人驾驶汽车预测到加密货币开采等各种问题。以下就是经过编辑的采访记录: Ventu
[半导体设计/制造]
基于MAX7000系列CPLD的数据采集系统
  CPLD是复杂的PLD,专指那些集成规模大于1000门以上的可编程逻辑器件。它由与阵列、或阵列、输入缓冲电路、输出宏单元组成,具有门电路集成度高、可配置为多种输入输出形式、多时钟驱动、内含ROM或FLASH(部分支持在系统编程)、可加密、低电压、低功耗以及支持混合编程技术等突出特点。而且CPLD的逻辑单元功能强大,一般的逻辑在单元内均可实现,因而其互连关系简单,电路的延时就是单元本身和集总总线的延时(通常在数纳秒至十数纳秒),并且可以预测。所以CPLD比较适合于逻辑复杂、输入变量多但对触发器的需求量相对较少的逻辑型系统。    MAX7000系列CPLD及其开发平台介绍   由于高速数据采集系统的特殊要求,在众多的CP
[嵌入式]
基于MAX7000系列CPLD的数据采集系统
最新FPGA容量达340K逻辑单元
  Altera 65-nm Stratix® III系列的型号之一EP3SL340具有业界最大的340K逻辑单元(LE)容量,支持DDR3存储器,接口速率超过1067 Mbps,功耗在所有的大容量、高性能逻辑器件(PLD)中是最低的,主要应用于通信、计算机、存储以及军事和航空航天等领域。   Stratix III EP3SL340 FPGA采用了Altera的可编程功耗技术,功耗降低了29%。器件的DDR3存储器接口速率超过1067Mbps,存储器性能比竞争FPGA方案高出33%。拥有340K LE、17Mbits嵌入式存储器以及575个18 x 18乘法器。   NXP半导体公司资深系统和应用工程师Heiko Ruhle
[新品]
Altera发布Cyclone IV FPGA新系列
Altera公司(NASDAQ: ALTR)拓展其成功的Cyclone® FPGA系列并延续其收发器技术领先优势,于今天发布Cyclone IV FPGA新系列。在移动视频、语音和数据访问以及高质量3D图像对低成本带宽需求的推动下,Cyclone IV FPGA系列增加了对主流串行协议的支持,不但实现了低成本和低功耗,而且还提供丰富的逻辑、存储器和DSP功能。 Cyclone IV FPGA系列有两种型号。Cyclone IV GX器件具有150K逻辑单元(LE)、6.5-Mbit RAM、360个乘法器,以及8个支持主流协议的集成3.125-Gbps收发器,这些协议包括千兆以太网(GbE)、SDI、CPRI、V-b
[嵌入式]
利用FPGA解决TMS320C54K/SDRAM的接口问题
在DSP应用系统中,需要大量外扩存储器的情况经常遇到。例如,在数码相机和摄像机中,为了将现场拍摄的诸多图片或图像暂存下来,需要将DSP处理后的数据转移到外存中以备后用。从目前的存储器市场看,SDRAM由于其性能价格比的优势,而被DSP开发者所青睐。DSP与SDRAM直接接口是不可能的。FPGA(现场可编程门阵列)由于其具有使用灵活、执行速度快、开发工具丰富的特点而越来越多地出现在现代电路设计中。本文用FPGA作为接口芯片,提供控制信号和定时信号,来实现DSP到SDRAM的数据存取。 1 SDRAM介绍 本文采用的SDRAM为TMS626812ATMS626812A,图1为其功能框图。它内部分为两条,每条1M字节,数据宽度为8位,故
[嵌入式]
基于ARM的嵌入式系统从串配置FPGA的实现
1 引言 ARM(Advanced RISC Machines)既可以认为是一个公司,也可以认为是对一类微处理器的统称,还可以认为是一项技术。基于ARM技术的微处理器应用约占据了32位 RISC微处理器75%以上的市场份额,ARM技术正在逐步渗入到人们生活的各个方面。到目前为止,ARM微处理器及技术已经广泛应用到各个领域,包括工业控制领域、网络应用、消费类电子产品、成像和安全产品等。 FPGA(Field Programmable Gate Array)是一种高密度现场可编程逻辑器件,其逻辑功能是通过把设计生成的数据文件配置到器件内部的静态配置数据存储器(SRAM)来实现的。FPGA具有可重复编程性,能灵活实现各种逻辑功能。 基于S
[单片机]
基于ARM的嵌入式系统从串配置<font color='red'>FPGA</font>的实现
Actel新推高性能可重新编程FPGA
Actel日前推出高性能可重新编程FPGA——AFS090-1500。该产品采用先进的130nm 7层金属基于闪存的CMOS工艺,工作电压为3.3V,拥有350MHz系统性能,66MHz 64位PCI。 该系列产品采用FlashLock对FPGA内容进行安全保密,闪存容量从256KB到1MB,数据宽度有8位/16位或32位,读模式的存取时间为10ns。该产品集成了8/10/12位分辨率的ADC,取样频率达600KSPS,内部有2.56V基准电压源,、30个可升级输入通路,高压直接连接到输入容差±12V,具有电流和温度监视器,并且拥有10个MOSFET栅极驱动器输出。其可编程驱动力度为1μA、3μA、10μA、30μA和25mA。
[新品]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved