FPGA控制CLC5958型A/D转换器高速PCI采集

发布者:TranquilJourney最新更新时间:2010-06-25 来源: 嵌入式公社关键字:FPGA  CLC5958  A/D转换器  PCI采集 手机看文章 扫描二维码
随时随地手机看文章

  引言

  随着信息技术的发展,基于微处理器的数字信号处理在测控、通讯、雷达等各个领域得到广泛的应用。被处理的模拟信号也在向高频、宽带方面发展,但这需要高速、高分辨率的数字采集卡以将模拟信号数字化。美国国家半导体公司新推出的系列高速、高分辨率模/数转换器(如CLC5958)就非常适用于需要高速、高分辨率的信号采集系统。

  用于PC的采集系统以前大多有用ISA总线结构,这种结构的最大缺点是传输速率低,无法实现高速数据的实时传输。而PCI总线则以其卓越的性能受到了广泛的应用。32位PCI总线的最大传输数据速率可达132MB/s,64位PCI总线的最大传输速率可达528MB/s。实际上,采用高性能的总线已经成为高速采集技术发展的趋势。

  利用FPGA(现场可编程门阵列)来连接高速A/D转换器和PC的PCI接口,可以充分利用可编程器件高速、灵活、易于升级、抗干扰性能的优点,并且可以大大缩短开发时间[1]。

  1 CLC5958型A/D转换器

  本数据采集系统中的A/D转换器采用美国国家半导体公司的CLC5958,该电路具有14位分辨率和52Mb/s的转换速度,而且动态输入频带宽,转换噪声低,非常适合于宽带、高频信号的采集。CLC5958集高保真采样保持器和14位多通道转换器于一体,其信号和时钟均采用差动输入方式,且内部集成有参考电压,可支持CMOS和TTL双重输出标准。采用0.8μmBiCMOS制作工艺。CLC5958的内部结构如图1所示。

CLC5958的内部结构

  CLC5958的基本特性如下:

  ●具有极宽的动态输入范围;

  ●奈奎斯特滤波器特性卓越;

  ●取样保持能力强;

  ●采用48引脚CSP封装;

  ●CMOS、TTL输出可选;

  ●取样速度可达52Ms/s,SFDR可达90dB,SNR可达70dB。

  CLC5958可应用于GSM、WCDMA、DAMPS、精确天线系统等通讯领域。其工作时序如图2所示。但在具体应用时,应注意以下问题。

工作时序

  (1)由于AIN和AIN模拟量差分输入端可通过片内500Ω输入电阻器接入,且内置3.25V标准参考电压。为了减小非线性输入的偏置电流,其输入耦合网络应尽可能接近电路。

  (2)ENCODE和ENCODE为时钟差分输入端,其参考电源为VCC,时钟输入可以为PECL电平,也可以为其他波形(如直流为1.2V峰值在VCC以下的正弦波)。输入时钟的噪声超低,转换时的SNR性能越高。但由于时钟输入采用非自偏置输入,所以每个输入信号必须指定“地”电平。

  (3)该电路的噪声主要来自采样保持器的非线性特性和转换器,因此,通过变压器的磁耦合来传递输入信号可以有效减少低频噪声。输入时钟在电路内部被分频产生内部控制信号,但在分频过程中可能产生1/4倍和1/8倍的时钟噪声,这些噪声一般不大于-90dBFS。[page]

  (4)CLC5958的内部电源由V cc供给,但是输出信号电源由DVcc供给(3.3V到5V均可),使用时,每一个电源引脚都必须接入相应的电平,且最好并接0.01μF的去耦电容器。

  (5)该电路在高速采样时性能最好,如果采样速率过低,内部采样保持电路将会产生较大误差。

  根据以上注意事项,给出CLC5958在采样系统中的电路,如图3所示。

CLC5958在采样系统中的电路

  2 FPGA的内部设计

  由于CLC5958的转换速度高且控制操作简单,因此一般单片机因速度太低而很难控制该电路。如果采用高速DSP来控制,显然,对DSP超强的运算能力来说又是一种浪费。

  现在市面上销售的各种PCI接口控制电路,如果AMCC公司的S5933及PLX的9080系列等,虽然可以实现完整的PCI主、从设备模式的接口功能,将复杂的PCI总线接口转化为相对简单的用户接口,但系统结构受接口电路的限制,不能灵活地设计目标系统,且成本较高。本文所设计的数据采集卡则不需要完整的PCI接口功能。

  在高速数据采集方面,FPGA具有单片机和DSP无法比拟的优势,FPGA的时钟频率高,内部时延小,全部控制逻辑均可由硬件完成;而且速度快,效率高,组成形式灵活,并集成有外围控制、译码和接口电路。根据本数据采集系统的要求,FPGA分为以下几个模块:A/D控制模块:产生A/D时钟和控制信号用于控制CLC5958,读取A/D转换产生的数据并存储。双口RAM:作为缓存,一边存储A/D转换产生的数据,一边通过PCI向PC传输数据。双口RAM控制模块:产生存储和取数的读写信号和地址信号,控制双口RAM的正常工作。PCI接口控制模块:从双口RAM中读取数据,经过符合PCI协议的变换后,传送给PC。FPGA的内部结构如图4所示。

FPGA的内部结构

  (1)A/D转换器控制模块

  该模块首先从PCI总线控制模块接收采样速度控制字,然后根据控制字对FPGA时钟进行分频以得到用于CLC5958的时钟。同时可在A/D转换器中断输入线的每一个上升沿给双口RAM一个写入信号,并读取A/D转换器输出的数据。此外,还用于给双口RAM控制模块一个控制信号以使其输出的双口RAM地址控制字加1。

  (2)双口RAM

  当写入控制信号到达时,根据当前写入地址控制字向相应单元写入数据输入总线上的内容,并在读出控制信号到达时,根据读出地址控制字从相应单元读出内容,送到数据输出总线。

  (3)双RAM控制模块

  当启动写入地址控制信号到达时,把当前的写入地址加1,加满之后清零并重新开始,同时,当启动读出地址控制信号到达时,对当前读出地址加1,加满之后清零并重新开始。

  (4)PCI接口控制模块

  PCI总线接口控制模块中的信号按照功能可以分为系统信号、地址和数据信号、接口控制信号等。系统信号包括CLK和RST两个信号,为系统提供时钟和复位。对地址和数据信号来说,在总线传输操作周期中,一个PCI总线周期由一个地址段和紧随其后的一个或多个数据段组成,其中AD[30:0]是地址和数据复用总线,它可为PCI接口电路提供地址和数据信号。复用引脚C/BE[3:0]为PCI接口电路提供总线命令和这节允许两组信号。[page]

  接口控制信号主要由FRAME、IRDY、TRDY和DEVSEL等组成。其中FRAME信叫是总线周期构成信号,由当前总线中主要设备驱动,用以表明一个总线风吹草动期的开始和延续;IRDY表明启动方准备好数据;TRDY是目标设备就绪信号,在写操作中,TRDY有效说明从设备已准备好接收数据,在读操作中,它说明AD[30:0]上已有有效数据;DEVSEL为设备选择信号,当其有效时,说明驱动它的主设备已将其地址译码作为当前操作的目标设备,该信号作为输入信号时,DEVSEL用来表示总线上已有目标设备被选中。

  其他PCI总线所需但本系统不用的信号则可用高阻态来代替。图5示出PCI接口控制模块的内部结构。

PCI接口控制模块的内部结构

  PCI总线上的基本传输机制是突发分组传输。一个突发分组由一个地址周期和一个(或多个)数据周期组成。PCI支持存储空间和I/O的突发传输,所有的数据传输基本上都是由FRAME、IRDY和TRDY三条信号线控制的。

  当数据有效时,数据资源需要无条件设置IRDY信号(写操作为IRDY,读操作为TRDY)。接收方可在适当时间发出它的xRDY信号。FRAME信号有效后的第一个时钟上升沿是地址周期的开始,此时传送地址信息和总线命令。下一个时钟上升沿即是一个(或多个)数据周期的开始,每当IRDY和TRDY同时有效时,所对应的时钟上升沿,数据可以在主、从设备之间传送。在此期间,可由主设备或从设备分别利用IRDY和TRDY的无效而插入等待周期。PCI总线的读写时序如图6所示。

PCI总线的读写时序

  本设计采用Verilog语言来进行编程,在MAXpluse II仿真平台上进行仿真,采用的电中是Altera公司的EPM7160SQC160-6。PCI接口控制部分的仿真结果如图7所示。

PCI接口控制部分的仿真结果

  3 结束语

  本文提出一种采用可编程逻辑器件和A/D转换器组成的高速数据采集卡的设计方案,该采集卡只用两块主体电路,因而结构简单,可以直接插入PC,适用于智能仪器和其他需要高速数据采集的场合。如果在该采集卡前置处理部分增加通道转换和可控放大部分,则该采集卡的功能将更加完美。

关键字:FPGA  CLC5958  A/D转换器  PCI采集 引用地址:FPGA控制CLC5958型A/D转换器高速PCI采集

上一篇:基于PC+PLC等离子熔射自动控制系统设计
下一篇:支持HD WDR的监视摄像机单片FPGA方案面世

推荐阅读最新更新时间:2024-05-02 21:05

英特尔与Achronix签约,首度跨足晶圆代工
  英特尔将与台积电可程序逻辑门阵列(FPGA)客户Achronix签订22纳米晶圆代工合约,这是英特尔首度跨足晶圆代工市场,市场解读英特尔此举挑战台积电晶圆代工龙头地位意图已十分明显。   不过,半导体业界人士指出,英特尔日前宣布推出内含Atom核心及阿尔特拉(Altera)FPGA的Stellarton单芯片,扩大对嵌入式市场的布局,所以英特尔决定替Achronix代工,应该是为了Atom嵌入式单芯片铺路进行铺路。   根据外电报导,英特尔与FPGA新创公司Achronix将宣布22纳米代工合作案,英特尔明年第4季将推出以22纳米制程生产的Ivy Bridge处理器,同时也将开始为Achronix代工代号为Speedste
[半导体设计/制造]
利用视频套件加速FPGA上的视频开发
  随着下一代视频压缩标准问世,行业从基本视频处理向更复杂的集成处理解决方案转移,这使得系统的要求超越了独立DSP力所能及的视频性能。FPGA以不到30美元的价格提供20GMACs以上的DSP性能,从而为成本敏感型军事、汽车、医疗、消费、工业和安全应用填补了这一空白。只有FPGA能够为整套端对端视频解决方案提供逻辑、嵌入式处理、OS支持和驱动器。   妨碍开发人员将FPGA用于视频应用的因素并非他们缺乏对FPGA性能优势的了解,而是缺乏使用其设计流程的经验,对于那些习惯于用C语言编程的传统DSP程序开发人员来说尤为如此。   开发人员可以利用FPGA的灵活性来配置针对特定应用而优化的硬件架构,以此发挥该器件的性能优势。这种
[嵌入式]
利用视频套件加速<font color='red'>FPGA</font>上的视频开发
基于DSP/FPGA高精度测量系统中多电源可靠性设计
由于高精度测量系统工作频率高,数据处理量大,功耗也相对较高,而供电系统的好坏直接影响到系统的稳定性和系统的精度,所以设计高效率、高可靠性的供电系统具有极其重要的现实意义。本文主要叙述了一个实际高精度测量系统的电源设计。   1 DSP和FPGA的电源要求   系统采用Altera公司的Cyclone系列EPIC12型号FPGA和TI公司的TMS320C6713B型号DSP均需要两种电源 :外围I/O电压为3.3V及内核电压分别为1.5V和1.2V。因此必须考虑它们的配合问题:(1)在加电过程中,要保证内核先得到供电,外围I/O后得到供电,内核最晚也应该与周边I/O接口电源同时加电。否则可能会导致DSP和FPGA的输出端出现大电流
[电源管理]
基于DSP/<font color='red'>FPGA</font>高精度测量系统中多电源可靠性设计
联电65纳米曝良率问题 Xilinx受损
  继台积电传出40纳米制程出现良率问题,联电客户端FPGA(Field Programmable Gate Array)芯片业者赛灵思(Xilinx),亦传出因65纳米制程良率问题,导致高阶产品Virtex-5大缺货,且可能要到9月才能获得解决。台积电、联电先后在40纳米、65纳米出状况,显示晶圆代工厂宣告已成熟的先进制程技术,恐怕还是距离客户期待有一段差距,由于晶圆厂跟不上出货脚步,不仅让赛灵思急得跳脚,甚至迫使其调降财测。不过,联电对此并未发表评论。   近期半导体业界最热门话题,就是晶圆代工厂与客户之间的互动变化,台积电董事长张忠谋重披战袍后,在技术与客户端都盯得很紧,至于联电执行长孙世伟亦是技术研发出身,上任后积极在业
[嵌入式]
基于FPGA的并行可变长解码器的实现技术
  可变长编码(VLC)是一种无损熵编码,它广泛应用于多媒体信息处理等诸多领域。在H.261/263、MPEG1/2/3等国际标准中,VLC占有重要地位。VLC的基本思想是对一组出现概率各不相同的信源符号,采用不同长度的码字表示,对出现概率高的信源符号采用短码字,对出现概率低的信源符号采用长码字。Huffman编码是一种典型的VLC,其编码码字的平均码长非常接近于数据压缩的理论极限——熵。   可变长解码(VLD)是VLC的逆过程,它从一组连续的码流中提取出可变长码字,并将之转换为对应的信源符号。由于在VLC过程中,码字之间通常不会加入任何分隔标识,这就造成了在解码过程中识别码字的困难。因此,在VLD过程中,变长码字必须逐一识别
[嵌入式]
基于<font color='red'>FPGA</font>的并行可变长解码器的实现技术
英特尔与百度强强联手,助力人工智能
在今日举行的百度AI开发者大会Baidu Create上,英特尔人工智能事业部副总裁Gadi Singer介绍了英特尔与百度在人工智能领域的一系列合作进展,包括英特尔Movidius视觉处理器(VPU)支持百度Xeye智能零售摄像头产品,英特尔FPGA助力百度计划推出的工作负载加速即服务,以及基于英特尔至强可扩展处理器平台优化的PaddlePaddle深度学习框架。 英特尔人工智能事业部副总裁兼人工智能架构总经理Gadi Singer出席百度AI开发者大会并发表演讲 “从赋能终端设备智能化,基于至强可扩展处理器的大规模数据中心,到利用英特尔FPGA加速不同工作负载,再到让PaddlePaddle开发者更简便地进行跨平台编
[物联网]
英特尔与百度强强联手,助力人工智能
利用FPGA技术实现数字通信中的交织器和解交织器
    摘要: 介绍用FPGA实现数字通信中的交、解交织器的一种比较通用的方案,详细说明了设计中的一些问题及解决办法。还介绍了一种实现FPGA中信号延时的方法。     关键词: 交织器与解交织器  FPGA技术  地址序列  最小时延  信号延时     在现代数字通信系统中,FPGA的应用相当广泛。尤其是在对基带信号的处理和整个系统的控制中,FPGA不但能大大缩减电路的体积,提高电路的稳定性,而且先进的开发工具使整个系统的设计调试周期大大缩短。 1 交织器与解交织器的原理     数字通信中经常用信道编码来提高数据传输的可靠性,其中一些信道编码加入了交织模块,以进一步提高抗干扰性
[半导体设计/制造]
基于PCI总线的微弱信号采集模块的设计方案
  1.引言   随着微电子技术的广泛普及、计算机技术的快速发展,现场信息实时采集系统的性能越来越受到大量关注。从测试系统和科研领域产生的动态信息中提取有用数据进行现场实时采集并存储显得尤为重要。设计结合实际项目要求,提出基于PCI总线的微弱数据信号采集电路设计方案,将采集数据流通过前端处理电路和AD转换电路后,在中央控制模块FPGA控制下将数据流通过PCI总线传输给上位机保存,以便分析处理和显示,从而实现采集系统对微弱数据信号进行高速采集存储和分析。   2.总体设计方案   在实际研究和现场测试中,数采系统常采用PC机为测试平台,使用PCI总线作为中介实现数据流采集和传输到PC机中进行显示分析。   系统常采用
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved