航管二次雷达射频切换单元FPGA实现

发布者:糖三角最新更新时间:2011-04-04 来源: 现代电子技术关键字:航管二次雷达  射频切换  FPGA 手机看文章 扫描二维码
随时随地手机看文章
   

引言
    二次雷达也叫做空管雷达信标系统(Air TrafficControl Radar Beacon System,ATCRBS)。它最初是在空战中为了使雷达分辨出敌我双方的飞机而发展的敌我识别系统,当把这个系统的基本原理和部件经过发展后用于民航的空中交通管制后,就成了二次雷达系统。二次雷达是在地面站和目标应答器的合作下,采用问答方式工作,它必须经过两次有源辐射电磁波信号才能完成应有的功能。
    单脉冲二次雷达是按照雷达方位角度定位体制的不同而定义的,有别于常规的二次监视雷达。常规二次监视雷达实现一个目标定位需要利用雷达定向主波瓣中对这个目标的所有应答,而单脉冲二次雷达理论上只需要利用一次询问的应答即能准确定位。单脉冲技术应用于二次雷达,使对目标的测量可以方便的基于多个波束,有效地增加了数据冗余度,提高了角度测量的精度。对应答处理而言,单脉冲技术的应用,大大提高了在混叠或交织情况下对应答码的解码能力,使单脉冲二次雷达与常规二次雷达相比实现了一次质的飞跃。
    国内自主研发航管二次雷达在近10年间才开始,落后于国外20世纪80年代就发展起来的二次雷达系统。现今国内主要民用机场使用的二次雷达大多使用的是国外设备。如美国Raytheon二次雷达,意大利Alenia二次雷达,日本东芝雷达。在中央大力提倡国内自主研发的政策下,国内的一些厂家也紧跟国外技术开始研发属于中国的二次雷达及其终端显示系统。
    民航航管系统的基本要求是安全、迅速和有秩序地将乘客和货物从某一地点空运到另一指定地点。空中交通管制就是为达到此目的而建立的重要服务体系。为了满足民航系统对雷达系统可靠性的要求,雷达的设计采用了双通道热备份设计,目的是在当前通道故障的
情况下,保证航迹输出的连续性,双通道之间的切换单元在监控计算机命令下迅速切换。

1 射频切换系统组成
   
单脉冲二次雷达应答信号处理的基本流程如图1所示。


    在射频切换系统中,切换控制板接收监控计算机发出的切换命令,当确认要求进行切换时,通过切换控制板向切换开关发出切换信号,实现对三路射频信号与两个通道间的切换,三路(∑,△,Ω)开关的工作状态一致,即同时工作在A通道或同时工作在B通道,三路开关的状态随时通过控制电缆以TTL差分方式送给数据处理。根据二次雷达的技术指标,射频开关的耐峰值功率大于2.5 kW,耐平均功率大于20 W。
在设计中,选择了射频开关TN6K31,该开关有足够的频宽和线性,确保信号不失真,插入损耗小于0.3 dB,通道隔离度大于70 dB,满足雷达系统的指标。
    射频切换系统中切换控制单元的原理如图2所示。

[page]

 

    在射频切换系统的控制电路中,选用Lattice公司的EPLD作为主处理芯片(ispLS11032E),该芯片有64个I/O端,8个指定输入端,6 000个逻辑门,192个寄存器,最大时延小于等于12 ns,通过简单的5线接口,即可用PC机对线路板上菊花链结构的最多8个芯片进行编程。
    切换开关工作原理为:A通道输入选通控制脉冲时,如当前开关工作在A通道,则维持在A通道,不作切换;如当前开关工作在B通道,则切换到A通道。同样,B通道输入选通控制脉冲时,如当前开关工作在B通道,则维持在B通道,不作切换;如当前开关工作在A通道,则切换到B通道。即同时工作在A通道或同时工作在B通道,三路开关的状态随时通过控制电缆以TTL差分方式送给数据处理。
    在射频切换控制板中信号流程如下:监控计算机发出的差分切换脉冲经差分接收器接收后,进入可编程EPLD,在EPLD内利用硬件语言实现了对切换脉冲的滤波、脉冲判断、框架判断等,确认该信号为计算机切换命令而不是外来干扰后,发出切换信号到驱动单元,切换信号经驱动单元到开关TN6K31的控制端,实现切换动作。

2 系统实现的具体细节
2.1 信号滤波与毛刺抑制
   
二次雷达监控计算机发出的通道切换信号是脉冲编码信号。由于雷达工作电磁环境复杂,所以在系统内部要判断该信号是否为于扰信号,在系统中首先进行切换信号前、后沿的提取,将切换信号输入两个寄存器,加以门电路实现,如图3所示。


    LE与TE分别切换信号的前沿与后沿,在经过一系列寄存器,使前沿与后沿分别用触发器进行延时,根据前沿与后沿间间隔可以判断出脉冲的宽度,对于不符合切换条件的毛刺与噪声进行抑制。
2.2 框架检测
   
正常情况下,监控计算机发出的切换脉冲的两个脉冲的间隔为20 ms,在切换控制系统中使用的时钟为8.276 MHz,因此,一个切换命令的两个脉冲的时间间隔就认为两个前沿间有167,168或169个时钟周期。在该系统中,脉冲编码的检测是根据比较延时的前沿与非延时情况下的重合情况,延时的前沿对应于框架脉冲F1,非延时的前沿对应脉冲F2,F1相对于F2延时20ms,由于F2相对于F1有三个时钟脉冲的变化范围,F2与F1的前沿延时167,168或169个时钟周期的任一个对齐,都认为是一个正确的框架。框架检测示意如图4所示。



3 结语
   
雷达的发展和更新换代不仅对雷达的性能提出了更高的要求,而且对实现的方式也提出了新的要求。集成度高、性能好、体积小已经成为雷达设计的必然要求。飞机密度的不断增加,对雷达系统的可靠性,提出了更严格的要求,为了提高可靠性,现代雷达使用双机热备份冗余设计,双机中切换部分的可靠性关系到雷达的整体性能,用硬件设计语言编程EPLD方法处理二次雷达的切换信号具有很大的优越性。

关键字:航管二次雷达  射频切换  FPGA 引用地址:航管二次雷达射频切换单元FPGA实现

上一篇:基于DSP控制系统的离散模型参考自适应算法在燃料电池车中的应用
下一篇:基于Altera ASI IP核的ASI发送卡实现

推荐阅读最新更新时间:2024-05-02 21:20

NI FlexRIO是否必须使用FPGA模块
NI LabVIEW FPGA模块可以帮助您利用LabVIEW程序框图对一个FPGA进行编程。在其底层,该模块采用代码生成技术实现图形化开发环境与FPGA硬件的整合。这种利用程序框图处理FPGA的方式非常适用于FPGA所提供的对内在并行机制的一种直观描述。不论您是否曾使用过硬件描述语言(HDL),您都可以利用该模块以及商业现成可用的(COTS)硬件来创建基于FPGA的测量与控制硬件。 systems 支持包括PCI/PXI板卡和模块化独立系统的硬件目标平台,超过100个面向快速开发的FPGA IP组块, 内置的I/O直接存储器访问(DMA)提供与主机系统的快速通信, 创建可以在40 MHz、80 MHz或者更高时钟下
[嵌入式]
Efinix®宣布: 扩大执行领导团队与董事会
可编程产品平台和技术创新企业 Efinix ® 今天宣布扩大其执行领导团队和董事会。吴兆明(Ming Ng)授任为Efinix的营运和应用资深副总裁,而行业领袖施伟(Richard Sevcik)和罗里斯(Christopher Norris)则被任命为董事会成员。 Efinix联合创办人、总裁兼首席执行官张少逸(Sammy Cheung)表示:“我们的Trion™ FPGA平台推出和Quantum™ eFPGA授权的响应是一个巨大的成功,建立了客户和授权交易的堅强有力通道。我们期待着业务、投资股权和公司资源方面的特破式增长。吴兆明的加入是一个绝佳时刻,对我们的执行领导团队来说,他是营运和客户支持方面一个久经考验的领导者。施伟
[嵌入式]
Efinix®宣布: 扩大执行领导团队与董事会
用于无线基础设备中数据转换器和低成本FPGA的JESD204
用于无线基础设备中数据转换器和低成本FPGA的JESD204A 引言   随着人们订购无线服务数量的激增、各种服务类型的多样化,以及更低的便携式设备接入因特网的费用,使得对于增加基础设施容量的需求日益明显。3G智能手机、3G上网本和3G平板电脑是引发对于无线数据服务和基站容量的爆炸性需求的主要推动力。将性能叠加到现有的无线宽带设备,例如:HSPA+和EV-DO(即3G+),已经解决了一部分数据吞吐量的需要,但因为服务速度慢,无线服务供应商仍饱受用户指责,尤其是在大城市中,用户不满的情况更加严重。   无线运营商有向更高带宽服务发展的计划,如:LTE和LTE-Advanced,以应对这一挑战;但是,部署这些4G技术还需要
[模拟电子]
用于无线基础设备中数据转换器和低成本<font color='red'>FPGA</font>的JESD204
FPGA设计中,时序就是全部
  当你的FPGA设计不能满足时序要求时,原因也许并不明显。解决方案不仅仅依赖于使用FPGA的实现工具来优化设计从而满足时序要求,也需要设计者具有明确目标和诊断/隔离时序问题的能力。设计者现在有一些小技巧和帮助来设置时钟;使用像Synopsys Synplify Premier一样的工具正确地设置时序约束;然后调整参数使之满足赛灵思FPGA设计性能的目标。   会有来自不同角度的挑战,包括:   ● 更好的设计计划,例如完整的和精确的时序约束和时钟规范   ● 节约时间的设计技术,例如为更好的性能结果,整合设计的各个部分而编写严谨的RTL代码,提出最高性能挑战,当你之后调整设计时减少迭代运行时间   ● 综合和摆放以及路由时序的相
[电源管理]
CY7C68013与FPGA接口的Verilog HDL实现
0 引 言 USB(通用串行总线)是英特尔、微软、IBM、康柏等公司1994年联合制定的一种通用串行总线规范,它解决了与网络通信问题,而且端口扩展性能好、容易使用。最新的USB2.0支持3种速率:低速1.5 Mbit/s,全速12 Mbit/s,高速480 Mbit/s。这3种速率可以满足目前大部分外设接口的需要。 本文介绍了目前使用较多的USB2.0控制器CY7C68013芯片与FPGA(现场可编程门阵列)芯片接口的Verilog HDL(硬件描述语言)实现。本系统可扩展,完全可用于其他高速数据采集系统中。 1 系统构成 本系统主要是由FPGA和USB2.0控制器CY7C268013组成,系统框图及其信号连接关系如图1所
[应用]
Dini推出业界容量最大的基于FPGA器件的ASIC
Altera公司日前宣布,Dini集团在其业界容量最大的单板FPGA原型引擎中采用了具有340K逻辑单元(LE)的Stratix III EP3SL340 FPGA。DN7020K10采用了1,760引脚封装的20片EP3SL340 FPGA,每个器件提供1,104个用户I/O,容量等价于5千万ASIC逻辑门。客户设计无线通信、网络和图形处理应用等定制ASIC时,可以利用这一超大容量原型电路板来验证自己的逻辑设计,在接近实时时钟速率的环境下运行设计。 Dini集团总裁Mike Dini评论说:“Altera Stratix III FPGA是目前容量最大、速度最快的FPGA,这正是我们客户所需要的。我们的DN7020
[嵌入式]
FPGA软件无线电
软件无线电 技术给正在开发无线电架构的工程师带来力量。编程中频(IF)带宽、调制、编码模式和其他无线电功能的能力广泛引起注意的。除了提供所有这些灵活性外,软件无线电必须改善灵敏度,动态范围和邻信道抑制性能。软件无线电仍然是无线电,但它必须被比正在替代的通常无线电执行的更好。 现场可编程阵列( FPGA )技术先进之处在于紧凑的占位空间能够高速处理,同时也保持软件无线电技术的灵活性和可编程性。FPGA在高速、计算密集、可重新配置应用(FFT、FIR和其他乘法—累加运算)中是受欢迎的。从FPGA和板供应商可得到可重新配置核,在FPGA中能够实现调制器,解调器和CODEC功能。系统设计人员期待着带集成FPGA的前端采
[嵌入式]
<font color='red'>FPGA</font>软件无线电
基于FPGA的高速运动目标单光幕测速系统设计
引 言 高速运动物体的物理状态检测分析一直以来都是一项重要的研究内容,特别是对于高速运动物体瞬时运动速度的检测。这是瞬态过程及效应物理研究中的一个有待发展的领域,可能会导致极端条件下的新物理效应,在高速碰撞等方面有着直接的应用背景,也给检测和控制技术提出了更高的挑战。 1 测量方法 对于高速运动的物体,常用的速度测量方法按测量原理可分成三类,即瞬时速度测量法、平均速度测量法和多普勒原理测量法。瞬时速度测量法采用弹道摆或微波倾角法,可以换算出物体的瞬时飞行速度,但测试误差较大,目前很难达到高的精度。多普勒测速法是利用波传播中多普勒效应进行测速的方法,也是一种比较有效的测量速度方法。平均速度测量法是在测量目标前进方向放置两道
[测试测量]
基于<font color='red'>FPGA</font>的高速运动目标单光幕测速系统设计
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved