一、电路设计
采用FPGA实现半整数分频器,可以采用以下方法:设计一个模N的计数器,再设计一个脉冲扣除电路,每来两个脉冲扣除一个脉冲,即可实现分频系数为N-0.5的分频器。脉冲扣除电路由异或门和一个2分频器构成。本设计在半整数分频器原理的基础上,对异或门加一个使能控制信号,通过对异或门和计数器计数状态值的控制,实现同一个电路完成多种形式分频,如图1所示。
二、VHDL语言的实现
现通过设计一个可以实现8.5分频,等占空比的17分频,2、4、8、16、32分频,及占空比为1∶8和4∶5的9分频等多种形式分频的分频器,介绍该通用分频器的FPGA实现。
由图1所示的电路原理图可知,分频器由带使能端的异或门、模N计数器和一个2分频器组成,本设计用D触发器来完成2分频的功能,实现方法是:将触发器的Q反输出端反馈回输入端D,将计数器的一个计数输出端作为D触发器的时钟输入端。各功能模块的VHDL语言实现如下。
1.模N计数器的实现
一般设计中用到计数器时,我们可以调用lpm库中的计数器模块,也可以采用VHDL语言自己设计一个模N计数器。本设计采用VHDL语言设计一个最大模值为16的计数器。输入端口为:使能信号en,复位信号clr和时钟信号clk;输出端口为:qa、qb、qc、qd。其VHDL语言描述略。
2.带使能控制的异或门的实现
输入端为:xor_en:异或使能,a和b:异或输入;输出端为:c:异或输出。当xor_en为高电平时,c输出a和b的异或值。当xor_en为低电平时,c输出信号b。其VHDL语言略。
3.2分频(触发器)的实现
输入端为:时钟信号clk,输入信号d;输出端为:q:输出信号a,q1:输出信号a反。其VHDL语言略。
4.分频器的实现
本设计采用层次化的设计方法,首先设计实现分频器电路中各组成电路元件,然后通过元件例化的方法,调用各元件,实现整个分频器。其VHDL语言略。
三、仿真结果及硬件电路的测试
本设计的目的是通用性和简易性,只要对上述程序稍加改动即可实现多种形式的分频。
1.实现8.5分频和等占空比的17分频
只要将上述程序中,调用计数器模块时端口qa、qb、qc匹配为open状态,同时置xor_en为高电平即可。从编译报告看出总共占用8个逻辑单元(logic elements),其仿真波形如图2~4所示。
图二
图三
图四
由图中qxiao和clk的波形可以看出,每隔8.5个时钟周期,qxiao信号产生一个上升沿,从而实现分频系数是8.5的分频,同时在qzheng端得到等占空比的17分频。设clk为170MHz,则qxiao输出为20MHz,qzheng输出为10MHz。
2.实现占空比为1∶8和4∶5的9分频
只要上述程序的xor_en置低电平即可在qxiao输出占空比为1∶8的9分频信号;在qzheng2输出占空比为4∶5的9分频信号。同样仅占8个逻辑单元(logic elements)。仿真波形如下。
3.实现等占空比的2、4、8、16和32分频 只要将上述程序中的xor_en置为低电平,同时将计数器模块的计数最大值设为16即可。仿真波形如下。
由此可见,只要稍微改变计数器的计数状态值,对异或门进行选通控制,即可实现上述多种形式的分频。本设计在Altera公司的EP1K50QC208-3构成的测试平台上测试通过,性能良好。
结束语
我们在设计模拟雷达脉冲信号和用FPGA开发扩频芯片时就用到了上述多种形式得分频。本文旨在介绍一种进行FPGA开发时,所需多种分频的实现方法,如果设计中所需分频形式较多,可以直接利用本设计,通过对程序的稍微改动以满足自己设计的要求。如果设计中需要分频形式较少,可以利用本设计部分程序,以节省资源。
上一篇:智能流程简化可编程系统芯片设计
下一篇:基于FPGA的65nm芯片的设计方案
推荐阅读最新更新时间:2024-05-02 21:21
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况