FPGA实现复接与分接系统

发布者:masphia最新更新时间:2011-08-19 关键字:复接  分接 手机看文章 扫描二维码
随时随地手机看文章
    引言

  近年来可编程器件的应用日益广泛,使用较多的是现场可编程门阵列(FPGA)和复杂可编程逻辑器件(CPLD)。FPGA器件性能优越,使用方便,成本低廉,投资风险小,使用FPGA设计可以完全根据设计者需要开发ASIC芯片,可方便地反复编写和修改程序,即使制成PCB后仍能进行功能修改。本文将着重介绍运用FPGA技术实现基群与二次群之间复接与分接系统的总体设计方案。

  数字复接基本原理及系统构成

  二次群帧结构及其复接子帧结构按ITU-TG.742协议,工作在8448kbit/s的采用正码速调整的二次群复接设备帧结构如图1所示,一帧共有848bit,前12位帧码组包括帧同步码10位,码型为1111010000;失步对告码,同步为“0”,失步为“1”;国内通信备用码。Cj1、Cj2、Cj3(j=1,2,3,4)为插入标志码,Vj(j=1,2,3,4)为码速调整插入比特,其作用是调整基群码速。二次群由四支路的子帧构成,子帧结构如图2所示,一子帧有212bit,1、2、3位码为帧码组,记Fj;插入标志码用Cj表示;码速调整插入比特用Vj表示。

   二次群帧结构

  复接系统构成

  复接系统构成的框图如图3。复接时序信号发生器产生码速调整需要的时序信号,四路基群信号先各自经正码速调整,变为2.112Mbit/s的同步码流。合路器顺序循环读取四路码流,并在每帧开头插入帧定位信号,输出8.448Mbit/s的标准二次群。

复接系统构成框图

  在接收端,合路码流先进行帧定位捕获,判定系统处于同步态、失步态还是过渡态。一旦捕获到帧定位信号,便驱动分接时序信号发生器工作,产生分路和码速恢复需要的时序信号,同时分路器工作,把帧定位信号抛掉,顺序循环分别送入4个码速恢复单元,扣除插入码元,恢复成四路2.048Mbit/s的基群信号。

  数字复接系统的FPGA设计

  本次FPGA设计采用分层设计,顶层为整个系统的原理框图(见图3),用一些符号表示功能块,然后把每个功能块分成若干子模块,各模块独立设计。下面就各模块的设计思想进行详细介绍。

  复接电路设计

  复接电路如图4所示,它由复接时序发生器、缓存器、码速调整控制电路、插入码控制电路、帧定位信号发生器和合路器6个模块构成。图中只画了第一条支路参与复接的实现过程,因为四条支路的过程完全相同,因而略去其余3个支路的电路。

 复接电路框图

  (1)复接时序发生器模块

  输入为2.112MHz频率的均匀时钟,通过该模块产生插入码控制电路所需的插入标志时隙脉冲SZ、调整插入时隙脉冲SV、频率为2.112MHz的非均匀时钟f(从输入的均匀时钟扣除了时隙SZ和SF)和帧定位信号发生器所需的时隙脉冲SF。

  (2)缓存器模块

  基群信号以2.048MHz的均匀时钟clk_wr写入缓存器,同时以2.112MHz的非均匀时钟clk_rd读出,clk_rd由插入码控制电路产生。该模块还需输出每次写入和读出一帧数据时第一个clk_wr脉冲P1和clk_rd脉冲P2,送给码速调整控制电路模块。在该模块的设计中,应注意每一帧信息码的位数不是固定的,必须通过码速调整控制电路模块的反馈信号Fn来确定,当反馈信号表明本帧需要调整,则位数为205;反之,位数为206。

  (3)码速调整控制电路模块

  缓存器的写入脉冲超前于读出脉冲的时间量称为读写时差,读写时差的大小总随时间不断变化着。该电路中缓存器的写入速率低于读出速率,随着时间的推移,缓存器中所存信息码数目越来越少,最后导致“取空”而造成错误的数据传输。因此,我们必须设定一门限,当信码数降到门限值时,就进行码速调整。

  通过对各时刻读写时差的联系以及趋向最终状态变化的分析得出,读写时差的最低点总是发生在一帧末尾,而在帧首通过两脉冲相位差就能判断本帧是否需要码速调整。具体地说,P1和P2输入进行鉴相判决得到帧首的读写时差T0,与调整门限值TS进行比较,若T0>TS则本帧不需要调整,反之若T0≤TS,则需要调整。这时模块输出反馈信号Fn给缓存器,和调整控制负脉冲Gate给输入码控制电路模块。

(4)插入码控制电路模块

  该模块的功能是对缓存器的读出信息进行插入码控制,输出2.112MHz的非均匀时钟clk_rd和参与合路的支路码流。为了标志是否在时隙SZ有插入调整比特,就必须引入插入标志码。通常在一帧中规定一个特定时隙SV,提供一次码速调整的机会。如果某支路需要进行调整,就在该时隙插入一比特脉冲,如不需要调整则该时隙仍传支路信息。为确保可靠性,通常采用3位码作为插入标志码。如果某支路有插入调整,用标志码为111来表示,否则用000表示。

    5)帧定位信号发生器模块

  该模块产生帧同步信号和告警指示码,帧定位信号可以集中插入,也可以分散到各支路插入,考虑到设备和延迟问题,我们选择集中插入。

  (6)合路器模块

  根据每个时间间隔传送码字的多少,有3种排列方式:按位复接、按字复接和按帧复接。其中按位复接要求缓存器容量较小,较易实现,而且二次群帧结构是由4个支路子帧按位复接而成,所以一般采用按位复接,本文采用的也是该方式。该模块按位顺序循环读取四路码速调整后的码流,在对应SF时隙插入帧定位信号“111101000000”,得到二次群信号,即完成整个复接部分。

  分接电路设计

  分接过程如图5所示,它是由帧定位捕获电路、同步时钟提取电路、分路器、分接时序信号发生器、插入码扣除控制电路、时钟平滑电路和码速恢复控制电路7个模块构成。由于四路分接电路基本相同,所以略去其余三路电路。

分接电路框图

  (1)帧定位捕获电路模块

  该模块通过捕获帧定位信号分辨帧首位置,并判定系统的状态。当连续3次捕获到帧定位信号,则判定系统处于同步态;之后若连续4次没捕获到帧定位信号,则判定系统进入失步态,并关闭分接时序信号发生器,也不再接收数据;一旦捕获到帧定位信号,便驱动分接时序信号发生器工作,并开始接收数据。这里要求模块在系统失步后能重新进入同步,如果传输中帧同步码组连续丢失了几帧,而系统又没有自恢复能力,那么整个系统将无法再正常工作。

  (2)同步时钟提取模块

  数据流的接收需要与之速率相同的时钟,这就需要对二次群码流进行位同步时钟提取,得到与之速率一致的均匀时钟给分路器。

  (3)分路器模块

  一旦捕获到帧定位信号,分接器便开始工作,把帧定位信号抛掉,其余在8.448MHz的位同步时钟下按位顺序循环进行同步分离,分别送入4个码速恢复单元。

  (4)分接时序信号发生器模块

  该模块设计思想基本同于复接时序信号发生器,其基准时钟由位同步时钟分频得到。帧定位捕获电路驱动它工作,产生帧定位时隙脉冲SF,插入标志时隙脉冲SZ,调整插入时隙脉冲SV和2.112MHz的非均匀时钟f,送给插入码扣除控制电路。

  (5)插入码扣除控制电路模块

  该模块的功能是扣除复接时插入码流的码字,输出作为码速恢复电路的写入时钟clk_wr’,在接收端对收到的SZ时隙的标志码进行择多判决,即标志码中有2个以上为1,判为有插入调整,分接时应将SV时隙内容扣除;否则判为无插入调整,分接时无需扣除SV时隙内容。如果输入码流对应SZ时隙出现“1”的个数比“0”的个数多,f中对应SV的一个节拍被扣除;如果对应SZ时隙“0”的个数比“1”的个数多,则f中对应SV的节拍仍起作用。

  (6)时钟平滑电路模块

  该模块对非均匀时钟clk_wr’进行平滑均匀,提取2.048MHz的均匀时钟clk_rd’作为码速恢复电路的读出时钟。这里可用VHDL语言来实现,也可以用一般的二阶锁相环。

  (7)码速恢复电路模块

  从分路器输出的支路码流以2.112MHz的非均匀时钟clk_wr’写入该模块,同时以2.048MHz的均匀时钟clk_rd’读出,即还原出基群信号,完成整个分接过程。

  结束语

  系统仿真波形良好,除了允许范围内的信号延迟外,能准确实现数字信号的复接和分接。误码率小于0.1%,系统信号平均时延小于4.5μs,去抖效果良好。而且本设计便于扩展,只需修改FPGA中相应控制参数,就可以实现高次群的复接与分接。该系统作为IP核应用于信号传输电路,对数字信号,或经PCM编码调制后的语音信号进行处理,可提高信道的利用率和传输质量,也可以进行光电转换后用于光纤通信或大气激光通信中。

关键字:复接  分接 引用地址:FPGA实现复接与分接系统

上一篇:手机设计集成的关键—IP模块
下一篇:基于FPGA-NIOS的多功能留言机设计

推荐阅读最新更新时间:2024-05-02 21:32

变压器的有载开关的好坏怎么测?
  变压器的有载分接开关定期需要进行检测,判断分接开关的性能怎么样,因此需要用到变压器有载开关测试仪,本文就来对该设备进行简单的介绍。   变压器有载开关测试仪是根据中华人民共和国电力行业标准之高电压测试设备,通用技术条件DL/T846、8-2004设计,可以满足《电力设备交接和预防性试验规程》中,要求检查有载分接开关的动作顺序,测量切换时间等要求。可实现对有载分接开关的过渡时间、过渡波形、过渡电阻、三相同期性等参数的精确测量,是测试有载分接开关的理想设备。(用户是调容的有载开关请提前告知)   变压器有载开关测试仪特点   测试Y0Y△型变压器,阻值不用换算直接显示;   数据分析人性化,可以自动的找出波形中间的故障,并
[测试测量]
变压器的有载<font color='red'>分</font><font color='red'>接</font>开关的好坏怎么测?
基于FPGA的数字系统帧同步器设计与实现
摘要:介绍了应用FPGA技术进行帧同步器设计的实现原理、系统框图及设计中需要注意的问题,给出了用VHDL描述的几个模块的源代码。 关键词:数字复接;帧同步器;FPGA 在数字通信网中,为了提高传输效率,常常需要将若干路低速数字信号合并成一路高速数字信号,以便通过高速信道进行传输。实现此功能的设备称为数字复接系统。 数字复接系统包括发送端和接收端两部分,通常称为复接器和分接器。为了使分接器的帧状态相对于复接器的帧状态获得并保持相位关系,以便正确地实施分接,数字复接系统在发送端把低速数字信号合并为高速信号的同时,往往还要插入用于同步的帧同步码;而在接收端,分接器要把发送端数字信号中的帧同步码检测出来并去除,然后才能分解为原来的
[应用]
小广播
热门活动
换一批
更多
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved