基于DSP Builder的回波抵消器设计与实现

发布者:春水碧于天最新更新时间:2011-11-05 关键字:回波抵消器  FPGA 手机看文章 扫描二维码
随时随地手机看文章

摘要:针对通信中的回波问题,基于自适应滤波的LMS算法,设计了自适应回波抵消器。并基于利用FPGA芯片,在DSP Builder平台上,有效结合MatLab/Simulink和Quanus II设计工具,根据模块化设计思想实现了LMS算法自适应回波抵消器硬件电路设计。软件仿真和系统FPGA硬件实测结果表明,该设计方法使回波抵消器的FPGA硬件实现更加简便快捷。
关键词:DSP Builder;回波抵消器;FPGA

    在数字通信、卫星通信等系统中,不同程度的存在回波现象,影响了通信质量。为了消除回波可以采用回波抵消器,它能估计回波路径的特征参数,以产生一个估计的回波信号,然后从接收信号中减去该信号,以实现回波抵消。而一般采用自适应滤波器模拟回波路径,可以跟踪回波路径的变化。
    DSP Builder是Ahera公司推出的面向DSP开发的系统级工具,它作为Matlab的一个Simulink工具箱出现,使得用FPGA设计的DSP系统完全可以通过图形化界面进行设计和仿真。
    文中介绍以DSP Builder为平台完成自适应回波抵消器的FPGA电路设计,用FPGA验证设计电路的正确性和可靠性。

1 自适应回波抵消器原理
    自适应回波抵消结构框图,如图1所示。

7a.jpg


    图1中s(n)表示B信号;x’(n)表示A信号产生的回波;v(n)为近端环境噪声;y’(n)是滤波器模拟的回波信号;e(n)是残留回波信号或误差信号。信号d(n)由B信号s(n)和回波x’(n)及噪声组成,即d(n)=x’(n)+s(n)+v(n)。假定模拟回波信号估计为
    7c.jpg
式中,ωk(n)为自适应滤波器的时变系数,从信号d(n)中减去模拟回波y’(n)信号后的残留回波信号或误差信号为
    7b.jpg

7e.jpg
    当自适应滤波器的单位脉冲响应能很好地模拟回波通道的传递函数时,可以认为时,从而有e(n)=s(n)+v(n),这样传向远端的信号中不包括回波信号x’(n),即回波被抵消。
    其中,回波抵消器的主要部分自适应滤波器所用算法选择LMS算法,其迭代公式为
    7f.jpg

    式中,X(n) =[X(n),X(n-1),X(n-2),…,X(n-M+1)]T表示时刻n时的输入信号矢量,由最近M个信号采样值构成,W(n)=[W0(n),Wl(n),…,WM-1(n)]T表示n时刻自适应滤波器的系数矢量估值,μ是控制稳定性和收敛速度的步长参量。

2 FPGA硬件设计
    设计选用FPGA是Altera公司Cyclone系列的EPlCl2Q240C8。FPGA中I/O端口可自由定义,电路设计方便、编程灵活、不易受外部干扰。系统编译环境采用QuartusⅡ,顶层设计为图形化方式。芯片模块划分为分频模块、D/A转换模块和回波抵消器模块。分频模块采用VHDL语言编程实现,D/A转换模块采用硬件电路实现,同波抵消器模块用DSPBuilder软件进行设计。
2.1 分频模块设计
    分频模块是将外部时钟进行分频设定,得到系统内部DA模块和回波抵消器模块所需要的时钟。分频模块的外部时钟输入频率为50 MHz,8分频后产生的时钟频率约为6 MHz。
2.2 回波抵消器模块设计
    该部分采用层次化的设计方法。利用DSP Builder模块构建自适应算法部分,根据LMS算法迭代公式(4)和滤波器的估计输出式(2),建立加权分量模型。如图2(a)所示。

7m.jpg


    在图2(a)中,第i个延时单元的输入信号为x(n),延时后的输出信号为x(n-1),同时输入信号x(n)产生一个乘积y’(n)=ω(n)x(n),由于是滤波器的估计输出是一系列权值分量与输入矢量的各分量乘积之和。因此,除第一级外,后续单元必须加上前一级的加权单元的输出。封装后,则可以根据滤波器阶数的不同而相应调整,以实现多级级联。尤其是在构造阶数可变和阶数较大的滤波器时更能显出其灵活性。然后将封装后的加权分量单元依照阶数级联,并再次封装即构成抵消器模块。可运用于顶层模型中。
    在顶层系统模型中连接各子模块,如图2(b)所示,图中两个信号源sin2,sin1采用正弦信号发生器实现,利用正弦查找表产生正弦波数据,函数调用格式为lOsin([0:2π/2∧4:2π])和5sin[0:2π/2∧6:2π],其输入地址分别为4位和6位,输出为16位。Dixiaoqi模块由图2(a)级联封装得到,模块Parallel to serial为并行/串行转换器。
    设计中,因语音信号频率可以看作约为3.4 kHz,所以信号采样频率设为8 kHz,假设回波延迟2.5 ms(小于回波对听觉产生干扰的范围20 ms),考虑收敛速度和实现情况,步长采用0.1,计算得出滤波器阶数20。
2.3 D/A转换模块设计
    利用Texas Instruments公司的D/A芯片TLC5620,并辅助使用4输入与门SN74HC08M和运算放大器LM358AM,构建数模转换器。TLC5620是8位电压输出的数模转换器,需5V外接电压,有4个输出端口可以选择。利用扩展插槽与FPGA连接,信号接119脚,时钟由所编程序在FPGA内实现,通过73脚与TLC5620连接,控制信号通过63脚连接TLC5620。

3 DSP Builder仿真和FPGA验证
    通过Simulink仿真得到波形,如图3(a)所示,图中第一行为返回A听筒的误差e信号波形,第二行为输入话筒的所有信号,即B信号与回波信号之和。由变化的波形可以看出,随着自适应滤波器的“学习”过程,回波逐渐被抵消。

7l.jpg
    利用ModelSim针对生成的RTL级VHDL代码进行功能仿真,设置信号为模拟形式,如图3(b)所示,图中为减去回波后的误差信号,与Simu-link仿真结果一致。
    使用ModelSim完成RTL级功能仿真,其仿真结果并不能精确反映电路的全部硬件特性,进行门级的时序仿真仍然十分重要。在Quartus Ⅱ下编译后进行时序仿真,其仿真波形,如图3(c)所示。
    把回波抵消器模型转化生成图元文件,作为一个子模块在顶层系统中调用。在QuartusⅡ环境下,调用各个子模块,构成完整的系统原理图设计,然后进行编译、仿真和引脚分配等工作。最后下载到FPGA芯片中,对硬件进行测试,采用SignalTapⅡ实际测得的值如图4所示,验证本设计的正确性。

 

7m.jpg
    最后通过D/A转换电路接入示波器。观测结果,如图5(a),图5(b)所示,通过比较混合回波的信号和经过抵消后得到的返回听筒的消除回波以后的信号,可以看出回波已基本消除,设计达到目的。通过测试,回波衰减率约为25 dB,基本达到ITUTG.167标准中回波衰减率至少20 dB的要求。

7m.jpg

 

4 结束语
    采用DSP Builder进行设计,使用图形界面,用模块化设计代替以往的VHDL语言编程,并综合多种设计工具,便于研究者迅速地将算法级的构思应用于系统设计中,从而可以专注于系统算法的设计,避免了繁琐的语言编程和电路设计,提高了设计速度,缩短设计周期,为产品开发节约了研发时间。
 

关键字:回波抵消器  FPGA 引用地址:基于DSP Builder的回波抵消器设计与实现

上一篇:基于ARM+FPGA的食用花生油质量快速 检测仪的设计
下一篇:基于DSP的实时互相关测速系统设计与实现

推荐阅读最新更新时间:2024-05-02 21:41

Altera发售业界最快、具有背板功能收发的Stratix V FPGA
2012年8月1号,北京——Altera公司(Nasdaq: ALTR)今天宣布,开始批量发售FPGA业界性能最好、具有背板功能的收发器。Altera的Stratix® V FPGA是业界唯一能够提供14.1 Gbps收发器带宽的FPGA,也是唯一支持最新一代光纤通道协议(16GFC)的FPGA。背板、交换机、数据中心、云计算应用、测试测量系统以及存储区域网的开发人员采用Altera最新一代28-nm高性能FPGA,能够大幅度提高数据速率,快速进行存储并检索信息。对于光传送网(OTN)应用,采用Stratix V FPGA,运营商能够在网络中迅速灵活的支持高速增长的数据流。 Altera一年以前已经开始发售集成了14.1 Gbp
[嵌入式]
IIR数字滤波的Matlab和FPGA实现
摘要:提出一种通过两个二阶节级联构成四阶IIR数字椭圆滤波器的设计方法,并利用Matlab仿真软件设计了通带内波纹不大于0.1 dB,阻带衰减不小于42 dB的IIR数字滤波器。论述了一种采用可编程逻辑器件,通过VHDL硬件描述语言实现该滤波器的方法。给出了在QuartusⅡ软件下的仿真结果,并在FPGA器件上验证实现。实验证明,这种方法是切实可行的。 关键词:无限长单位脉冲响应滤波器;Matlab;FPGA;VHDL 0 引言 数字滤波器具有比模拟滤波器精度高、稳定、体积小、重量轻、灵活、不要求阻抗匹配,以及能够实现模拟滤波器无法实现的特殊滤波功能等特点,因此数字滤波器被广泛应用于图像处理和识别、语音处理和识别、通信、
[嵌入式]
IIR数字滤波<font color='red'>器</font>的Matlab和<font color='red'>FPGA</font>实现
高云半导体推出FPGA离线烧录及数据流文件加密工具
山东高云半导体科技有限公司(以下简称“高云半导体”)今日宣布推出高云 FPGA四路并行离线烧录器(以下简称“离线烧录器”),支持高云半导体小蜜蜂家族GW1N(R)系列芯片数据流文件的离线烧录。 图一 离线烧录器外观图 离线烧录器(图一)是指在脱离PC环境下对GW1N(R)芯片进行数据烧录的设备,具备速度快、数据保密、便携稳定、多路烧录等特点,适用于工厂大批量、快速量产,并方便检修人员外出携带;相比传统的PC终端,离线烧录器优势显著。 其一,离线烧录器可对四个FPGA器件同时进行烧录,也可在单一接口下自动检测设备接入并进行烧录,极大的提高了量产速率; 其二,与PC终端数据需要进行软件操作下载和转换相比,使用离线烧
[半导体设计/制造]
大型设计中FPGA的多时钟设计策略
  利用FPGA实现大型设计时,可能需要FPGA具有以多个时钟运行的多重数据通路,这种多时钟FPGA设计必须特别小心,需要注意最大时钟速率、抖动、最大时钟数、异步时钟设计和时钟/数据关系。设计过程中最重要的一步是确定要用多少个不同的时钟,以及如何进行布线,本文将对这些设计策略深入阐述。   FPGA设计的第一步是决定需要什么样的时钟速率,设计中最快的时钟将确定FPGA必须能处理的时钟速率。最快时钟速率由设计中两个触发器之间一个信号的传输时间P来决定,如果P大于时钟周期T,则当信号在一个触发器上改变后,在下一个逻辑级上将不会改变,直到两个时钟周期以后才改变,如图1所示。         传输时间为信号在第一个触发器输出处所需
[工业控制]
Achronix推出突破性的FPGA系列产品 将性能提升到全新高度
基于现场可编程门阵列(FPGA)的硬件加速器件和高性能嵌入式FPGA(eFPGA)半导体知识产权(IP)领导性企业Achronix半导体公司(Achronix Semiconductor Corporation)近日宣布:推出创新性的、全新的FPGA系列产品,以满足人工智能/机器学习(AI/ML)和高带宽数据加速应用日益增长的需求。Achronix的Speedster®7t系列基于一种高度优化的全新架构,以其所具有的如同ASIC一样的性能、可简化设计的FPGA灵活性和增强功能,从而远远超越传统的FPGA解决方案。 Speedster7t FPGA系列产品是专为高带宽应用进行设计,具有一个革命性的全新二维片上网络(2D NoC)
[嵌入式]
采用低功耗28-nm FPGA降低系统总成本
    引言 以少胜多——降低成本和功耗,提高效能,使您的产品能够更快的运行。这些棘手的难题是设计工程师目前所必须面对的。好在Altera的28-nm系列产品提供定制方法来解决这些问题。 采用TSMC的28LP工艺以及线键合封装,在所有28-nm FPGA中,Cyclone V FPGA前所未有的同时实现了高性能、低系统成本和最低功耗。Cyclone V FPGA系列有六种目标型号:仅含逻辑的(E)型号、基于3G收发器的(GX)型号、基于5G收发器的(GT)型号,以及这些型号的SoC衍生产品(即,分别是SE、SX和ST),每一型号都含有集成双核ARM® Cortex™-A9 MPCore™应用级处理器。每一器件型号集成了丰
[嵌入式]
赛灵思第一批7 系列 FPGA目标设计平台上市
全面提升7 系列 FPGA的设计生产力和系统集成能力。行业第一批28nm FPGA完整开发套件亮相DesignCon 2012展会,致力于提升系统性能、降低功耗并缩减材料清单成本。 2012 年 2月 1 日,中国北京 — 全球可编程平台领导厂商赛灵思公司 (Xilinx, Inc. (NASDAQ:XLNX) )宣布推出其首批用于加速 28nm 7 系列FPGA系统开发与集成能力提升的目标设计平台。赛灵思针对 FPGA 系统设计和集成的目标设计平台方法提供了业界最全面的开发套件,包括开发板、ISE 设计套件工具、IP 核、参考设计和 FPGA 夹层卡 (FMC),能帮助设计人员立即启动应用开发。 在 DesignCon 20
[嵌入式]
基于CPLD/FPGA的半整数分频的设计
摘要:简要介绍了CPLD/FPGA器件的特点和应用范围,并以分频比为2.5的半整数分频器的设计为例,介绍了在MAX+plus II开发软件下,利用VHDL硬件描述语言以及原理图的输入方式来设计数字逻辑电路的过程和方法。 关键词:VHDL CPLD/FPGA 数字逻辑电路设计 半整数分频器 1 引言 CPLD(Complex programmable Logic Device,复杂可编程逻辑器件)和FPGA(Field programmable Gates Array,现场可编程门阵列)都是可编程逻辑器件,它们是在PAL、GAL等逻辑器件基础上发展起来的。同以往的PAL、GAL相比,FPGA/CPLD的规模比较大,适合于时序、组合等逻
[半导体设计/制造]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved