直序扩频的研究与FPGA实现

发布者:咖啡狐狸最新更新时间:2011-12-15 关键字:直序扩频  FPGA  PN码  匹配滤波器 手机看文章 扫描二维码
随时随地手机看文章
    扩频通信是现代通信系统中的一种独特的通信方式,其拥有较强的抗干扰、抗多径性能以及频谱利用率高、多址通信等诸多优点。直接序列扩频被许多现存的和未来的蜂窝通信系统采用,并广泛应用在军事通信网络与系统中。
    随着微电子制造工艺的发展,可编程逻辑器件取得了长足的进步。可以完成超大规模的复杂组合逻辑与时序逻辑的现场可编程逻辑器件(FPGA),在电子系统的设计中得到越来越广泛的应用。
    以Quartus II软件为开发工具,利用FPGA实现了一个基带直接序列扩频通信系统,其包括发送模块和接收模块两部分。

1 直序扩频通信系统的基本原理
    直接序列扩展频谱系统(Direct Sequece Spread Spectrum Communication Systems,DS-SS),简称直扩系统,是用待传输的信息信号与高速率的伪随机码波形相乘,去调制射频信号的某个参量,来扩展传输信号的带宽。原理如图1所示。

f.JPG


    在发信机端,待传输的数据信号与伪随机码波形相乘形成的复合码对载波进行调制,然后由天线发射。在收信机端,要产生一个和发信机中的伪随机码同步的本地参考伪随机码,对接收信号进行解扩。解扩后的信号送到解调器解调,恢复出传送的信息。

2 直序扩频通信系统发送模块的设计与实现
    发射子系统主要包括信息码的输入模块、扩频伪随机码的产生模块及扩频模块。
2.1 信息码输入模块
    该模块提供系统仿真及调试用的输入数据源,数据固化在ROM中。设置为200字长、1位宽。设计ROM的地址控制模块,以给定的时钟驱动一个计数器来循环产生地址信息,使得ROM中存储的待发射信息循环不断的输出。
    利用Verilog语言设计地址控制模块,利用QuartusⅡ提供的LPM定制ROM模块,用原理图设计生成顶层实体,可得如图2所示的电路及图3所示仿真结果。

g.JPG

d.JPG


    从结果可以看出,在时钟控制下,地址输入端循环产生地址信息使ROM中的数据循环输出。
2.2 PN码发生器的数字化设计
    系统的PN码发生器采用m序列发生器,本设计中m序列发生器选用6级移位寄存器,即n=6,其对应的特征多项式为f(x)=x6+x+1,由第1和第6级引回反馈,序列发生器结构如图4所示。

i.JPG


    6级m序列发生器可产生周期为63的PN码序列,因为寄存器起始序列若全零,输出序列也将为全零。这样会造成PN码发生器进入死锁状态。因此要使PN码发生器正常工作,产生预期的PN序列,必须保证在起始时寄存器中至少有一个为1。设计发射端的PN码寄存器初始状态取“111111”。
    利用VHDL程序实现PN码发生器,可以采用结构化描述方式,也可采用寄存器传输描述方式,两种方式的仿真结果相同。设计采用寄存器传输描述方式,便于设计中修改寄存器的初始状态。仿真结果如图5所示。

e.JPG


2.3 扩频调制的实现
    在实际应用中,为达到数据符号扩频的目的,通常的做法是用一扩频码序列与待发射的信号相乘,并且扩频序列具有比数据比特窄得多的时宽,从而使扩频序列具有比数据序列高得多的频带。
2.4 发射子系统的综合仿真
    结合前几个模块,整个发射子系统部分将存储在ROM中的信息以取出后与来自PN码发生器的伪码序列进行模2加,完成信号的频谱扩展。系统电路图和仿真结果分别如图6和图7所示。仿真结果中,clk为全局时钟,clk4为读数时钟,clk204为PN码发生器时钟,data为输入数据,kuopinout为扩频输出数据。从结果可以看出,实现了扩频调制的功能。

j.JPG

a.JPG


    从仿真波形图可以看出,设计的发送端按要求完成了m序列的产生及扩频调制等功能.
3 接收模块的设计与实现
    相对于发射子系统,接收子系统是个复杂的数字信号处理过程,它主要完成数字基带信号的同步捕获和解扩。
3.1 本地PN码发生器的设计
    本地PN码发生器与发射子系统中的PN码发生器结构完全相同。也采用m序列发生器,这里不再叙述。
3.2 同步捕获模块的FPGA设计与实现
    扩频通信系统解扩的关键技术是扩频信号的同步,其性能的好坏直接影响到系统的性能和可靠性,而同步的关键又在PN码捕获方法。
    扩频码的同步捕获是要解决在工程上实用的问题,包含两方面的内容:简单的同步捕获设备和短的同步捕获时间。尽管设备简单是任何一个系统都追求的指标,但扩频通信系统中这个指标更显得重要。在不增加或少增加设备量的情况下,如何缩短扩频码的同步捕获时间是扩频码同步捕获的主要研究内容。
    扩频码同步捕获一般有以下几个步骤:(1)确定要搜索的扩频码相位的区域。(2)调整本地参考扩频码的相位。(3)求解扩频码的相关函数值。(4)对所求相关值进行判决。
    在综合考虑以上因素的基础上设计了数字基带匹配滤波器的捕获电路。匹配滤波器捕获的最大优点是捕获时间短,可以快速完成扩频信号的解扩和解调。在理想情况下,数字匹配滤波器(DMF)捕获系统最多只需要一个扩频序列周期的时间,就可检测出同步相位,实现扩频序列的捕获。
    在匹配滤波器中,用PN码序列与通道的待解扩数据进行相关运算,并计算出相关运算的和,由于PN码的重要特性就是它的自相关系数高,而互相关系数低,所以只要相关的两路信号的PN码一致,就可以获得相关积分的峰值。这意味着解扩的成功。用于PN码同步捕捉的匹配滤波器一般采用延迟线匹配滤波器,在捕捉过程中,接收信号与本地伪码序列连续地进行相关处理,任何时刻的相关结果都与一个门限相比较,如果超过了门限,则表明此时刻本地PN码序列的相位与接收码序列相位是同步,同步过程即告完成,同时还完成了扩频信号的解扩。由于PN码的自相关特性,在一个码周期内总会出现一个相关峰,在仅T=NTC时间内,序列所有可能的相位都被搜索了一遍,具有较高的相位搜索速度,因此它的捕捉时间很短。然而当扩频码周期较长时,采用常规方法就需要较多抽头的FIR滤波器,这样的滤波器实现起来比较困难,而且占用资源较大,其硬件复杂度会随着扩频码的长度成倍增长。因此,将匹配滤波器在FPGA中以一种简单有效的方法来实现是关键。
    基于上述思想,用FPGA来实现的数字匹配滤波器由两组延迟移位寄存器、乘法器、算术累加器和一组系数寄存器构成,结构示意图如图8所示。

k.JPG


    在图8中,序列移位寄存器主要用于存放高速时钟采集的输入扩频数据,并经过固定的延时单元后将数据送入乘法器中与预存的PN码做相关运算。移位寄存器组构成匹配滤波器阵列,目的在于完成扩频信号与本地伪码的匹配。
    数字基带匹配滤波器的仿真结果如图9所示。

b.JPG


3.3 解扩模块的FPGA实现
    对于直扩系统,只有在完成扩频序列的同步后,才能用同步的PN码序列对接收的扩频信号进行相关解扩,对于基频信号来说,解扩的方法与扩频相同,通常的做法就是用本地同步的PN码序列与接收到的扩频信号相乘,即可把扩频的宽带信号恢复成窄带信号,以解调出传送的信息数据。
3.4 基带系统综合仿真
    结合以上模块进行基带综合功能仿真,仿真图如图10和图11所示。

l.JPG


    发射子系统中,发送PN码产生器为63位序列,用它对信息码进行扩频。接收子系统中,本地PN码发生器也为63位序列,频率和码字与发送端都相同,但相位不同。同步捕获采用匹配滤波器法,将本地PN码与接收信号中的PN码进行相关匹配,实现同步捕获后,启动本地PN码进行同步相位移动,送入解扩模块中进行解扩。
    系统仿真结果如图11所示。

c.JPG


    从结果可以看出,在捕获到PN码的情况下,系统可以实现正确的解扩功能。

4 结束语
    研究了直序扩频的基本原理,设计并实现了基于FPGA的直序扩频系统,给出系统的设计电路和仿真结果,通过结果验证了设计的正确性和可行性。

关键字:直序扩频  FPGA  PN码  匹配滤波器 引用地址:直序扩频的研究与FPGA实现

上一篇:辐射对FPGA应用的影响及解决方案
下一篇:Altera率先实现28-nm FPGA与PLX技术公司PCIe Gen3交换机的互操作

推荐阅读最新更新时间:2024-05-02 21:47

莱迪思FPGA器件让笔记本电脑重获生机
COVID-19新冠病毒的爆发让人们的工作状态发生了巨大变化,笔记本电脑市场也因此繁荣了起来。早在病毒蔓延全球之前,行业分析公司Gartner就曾在2020年1月指出:“Windows10升级的强劲业务需求让PC市场自2011年以来首次出现增长,尤其是在美国、欧洲、中东和非洲(EMEA)以及日本市场。”为了在这个日益兴盛的市场中保持竞争力,笔记本电脑的OEM厂商希望通过采用新技术和增添新应用来提高生产力,从而使其产品获得差异化优势。虽然其中许多技术最初是用于智能手机等设备,但它们同样可以在笔记本电脑上大放异彩,使之一方面拥有成熟笔记本电脑的强大功能,另一方面又获得移动设备的便捷和安全性,并很好地适应周围环境。 笔记本电脑上的许
[嵌入式]
莱迪思<font color='red'>FPGA</font>器件让笔记本电脑重获生机
ARM7与FPGA在工控和故障检测中的应用
工业控制中往往需要完成多通道故障检测及多通道命令控制(这种多任务设置非常普遍),单独的CPU芯片由于其外部控制接口数量有限而难以直接完成多路检控任务,故利用ARM芯片与FPGA相结合来扩展检控通道是一个非常好的选择。这里介绍用Atmel公司ARM7处理器(AT91FR40162)和ALTERA公司的低成本FPGA芯片(cyclone2)结合使用完成多通道检控任务的一种实现方法。 各部分功能简介 图1为此系统的结构连接框图。如图所示,ARM芯片与FPGA芯片之间通过数据总线、地址总线及读写控制线相连,而与终端PC则通过串口通信;FPGA与目标设备通过命令控制总线和故障检测总线相连。 图1 系统结构框图 1 故障检测和
[单片机]
ARM7与<font color='red'>FPGA</font>在工控和故障检测中的应用
基于FPGA和USB2.0的高速数据采集系统
数据采集在现代工业生产及科学研究中的重要地位日益突出,对实时高速数据采集的要求也不断提高。在信号测量、图像处理、音频信号处理等一些高速、高精度的测量中,都要求进行高速、高精度的数据采集。这就对数据采集系统的设计提出两个方面的要求:一方面,要求接口简单灵活且有较高的数据传输率;另一方面,由于数据量通常都较大,要求主机能够对数据做出快速反应,并及时分析和处理。 实现数据采集与传输,可选择如下3种方法: ①使用传统的串/并口。传统的串口(如RS232),其传输速率为几十kb/s到100 kb/s,而系统所要求的数据传输速率很高,而且还要实现数据的采集与传输同步进行,串口的速率远远达不到实时要求;对于并口,虽然它的传输速率可达到1 Mb/
[测试测量]
基于<font color='red'>FPGA</font>和USB2.0的高速数据采集系统
基于SYSTEM C的FPGA设计方法
一、概述    随着VLSI的集成度越来越高,设计也越趋复杂。一个系统的设计往往不仅需要硬件设计人员的参与,也需要有软件设计人员的参与。软件设计人员与硬件设计人员之间的相互协调就变的格外重要,它直接关系到工作的效率以及整个系统设计的成败。传统的设计方法没有使软件设计工作与硬件设计工作协调一致,而是将两者的工作割裂开来。软件算法的设计人员在系统设计后期不能为硬件设计人员的设计提供任何的帮助。同时现在有些大规模集成电路设计中往往带有DSP Core或其它CPU Core。这些都使得单纯地用原理图或硬件描述语言来设计、仿真这么复杂的系统变得十分困难。System C就是在这些矛盾的背景下提出的。它的出现为复杂的系统设计提供了一条有效的
[应用]
Actel隆重推介低功耗IGLOO FPGA和Fusion为基础的MicroTCA混合信号解决方案
同时展示具ARM7功能的混合信号Actel Fusion可编程系统芯片 (PSC) Actel 公司将于 2007 年 3 月 5-6 日于深圳 (展台编号 2H02) 及 3 月 13-14 日于上海 (展台编号 4P37) 举行的国际集成电路研讨会暨展览会 (IIC-China) 上,重点展示其最新的技术产品 -- Actel IGLOO 系列器件。 Actel IGLOO系列是业界最低功耗的现场可编程门阵列 (FPGA) 产品,这使其成为中国市场便携式应用设计的理想选择。这个以 Flash 为基础产品系列的静态功耗为5μW,是最接近竞争产品功耗的四分之一;与目前领先的PLD产品比较,可延长便携式应用的电池寿命达5倍,
[焦点新闻]
比较ARM,AVR,MSP430,Coldfire,DSP,FPGA
1 我以为这样比没有意义,做嵌入式系统最大特征是 嵌入 二字,也就是说你的控制系统是嵌入于你的控制对象之中,所以首先是服从于对象的需求和特征,脱离对象空论谁好谁坏有何依据? 每个MCU都有其存在的价值,每个使用者的选择都有其道理,AVR开始时是以单时钟周期指令为卖点,相对于当时 12个时钟的经典51确实有优势,而且基于CMOS的特征,时钟越高功耗越大,所以它在能耗上似乎明显占优。 可随着技术的改进,51现在已经早就有了4时钟周期,2时钟周期乃至单时钟周期的芯片了,此时AVR的速度优势已不存在。 如果考虑最高时钟限制,读者可以比较一下,似乎AVR的速度还不如某些51快。 如果考虑开发成本,那就更难说了。 至于ARM,有其优势
[单片机]
FPGA与PCB板焊接连接的实时失效检测
  81%的电子系统中在使用FPGA,包括很多商用产品和国防产品,并且多数FPGA使用的是BGA封装形式。BGA封装形式的特点是焊接球小和焊接球的直径小。当FGPA被焊在PCB板上时,容易造成焊接连接失效。焊接连接失效可以“致命“一词来形容。当焊接球将封装有FPGA的器件连接到PCB上时,如果没有早期检测,由焊接失效引起的电性异常可能会导致关键设备的灾难性故障。为了防止关键设备由于焊接问题引起的灾难性故障,美国锐拓集团公司(Ridgetop-Group)开发了SJ-BIST解决方案。作为一系列的故障预测产品中的一员,SJ-BIST对工作中的FPGA的焊接失效提供了实时检测手段。   焊接点故障失效经常发生在FGPA,在所有类型
[测试测量]
基于SoPC的FPGA在线测试方法
  本文提出了一种基于SoPC的FPGA在线测试方法,是对现有FPGA在线测试方法的一种有效的补充。   1 在线测试数据操作流程   基于SoPC的FPGA在线测试方法的数据操作流程如图1所示。如果用户需要采集FPGA的测试数据并且上传至PC机,则用户首先要将被测试数据写入DMA读从外设,然后系统自动启动DMA控制器,将数据送入Nios II的数据存储器。再由JTAG UART控制器经JTAG接口上传至Nios II IDE(NiosⅡIntegrated Development Environment,Nios II开发环境),Nios II IDE将接收到的数据写入测量数据存储文件,从而完成了FPGA测试数据的上传。如果
[测试测量]
基于SoPC的<font color='red'>FPGA</font>在线测试方法
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved