基于FPGA的行间转移面阵CCD驱动电路设计

发布者:自在逍遥最新更新时间:2011-12-28 关键字:FPGA  行间转移面阵  CCD  驱动电路 手机看文章 扫描二维码
随时随地手机看文章
    

1、引言

电荷耦合器件(CCD)是一种光电转换式图像传感器,它将图像信号直接转换成电信号。由于CCD具有集成度高、低功耗、低噪声、测量精度高、寿命长等诸多优点,因此在精密测量、非接触无损检测、文件扫描与航空遥感等领域中得到了广泛的应用[1]。面阵列CCD成像器件分为全帧转移(FullFrame)CCD、帧转移(Frame.Transfer)CCD、行间转移(InterlineTransfer)CCD三种类型。行间转移CCD中的成像区与存储区呈列交错,因此不需要机械快门,速度最快且能连续成像;同时在真正的成品中,会在每个像素上加微透镜从而弥补了填充因子小的缺点。典型的消费级的相机,一般用的都是行间转移CCD。

CCD器件需要驱动脉冲信号才能正常工作,而驱动电路就为CCD提供所需的时序逻辑和相关的电压信号,所以驱动电路的研制就显得十分的重要。CCD的驱动电路主要由供电模块、驱动器电路和驱动时序产生电路三部分组成。常用的几种CCD驱动时序产生方法包括:中小规模数字逻辑电路驱动方法、使用只读存储器方法、微处理器或数字信号处理器(DSP)、使用可编程逻辑器件,CPLD或FPGA等。本文中驱动时序采用第三种方法可编程逻辑器件FPGA来实现。


2、KodakCCDKAI-0340简介


KAI-0340是Kodak公司生产的一款行间转移型面阵CCD,单(双)通道输出可选择(本文中选用单通道输出模式)。主要的性能参数如下:
20111130101419630.jpg


具有以下特征:

·水平、垂直均为两相驱动,其中一相垂直转移时钟为三电平

·电子快门

·低暗电流、高灵敏度

·每行左右两端各有24个暗像元,可以作为暗电平参考


3、CCD供电模块


为了保证CCDKAI-0340S正常工作,需要的驱动电压和直流偏置电压具体要求如表1所示。
20111130101423292.jpg


对表1进行分析可知:只需+15V和-9V两组电压就可实现对CCD的基本偏置;H1、H2水平移位驱动工作电压峰峰值为5V(-5V~0V),R复位驱动的工作电压峰峰值也为5V(-3V~+2V),因此取+5V作为水平和复位驱动时钟的工作电压;V1垂直转移的工作电压9V(-9V~0V),V2为三电平(-9V、0V、+9V),从而取±9V作为垂直驱动时钟的工作电压;电子快门脉冲电压为VAB~VAB+40V(峰峰值为40V),需要±20V电路来实现。同时结合整个CCD成像系统供电需求,得出所需电压电平种类为:+3.3V,+5V,±9V,+10V,+15V,±20V。为了提高系统的电源效率,设定整个供电系统的外部输入电压为三种:+5V,-10V,+15V。+9V、+10V和+3.3V电压通过集成稳压器LT1764EQ和LT1764EQ-3.3来实现;-9V通过-10V电压分压得到;产生电子快门高压脉冲所需±20V电源采用±10V脉冲倍压电路实现,具体电路的原理图如图1所示[2]。经实际应用表明,电源模块满足各功能电路所需电压及功耗。
2011113010142428.jpg

 4、驱动器电路


面阵CCDKAI-0340S的驱动时钟分为水平移位时钟、复位时钟、垂直转移时钟、电子快门时钟四种,需要的驱动电压具体要求见表1。

CCD在单端输出模式下,水平移位时钟对应图像传感器的管脚连接如下:H1=H1S(5)+H1BL(4)+H2BR(9);H2=H2S(7)+H2BL(3)+H1BL(8)。H1,H2,R共用一片74AC04驱动器,每个时钟使用两个门驱动,再配合滤波电容和钳位电路便可以实现对面阵CCD的水平和复位驱动。

垂直转移需要V1、V2两相驱动时钟,其中V2为三电平,因为FPGA产生的信号只有‘0’和‘1’两种状态,所以需要将信号V2分解成V2HM和V2ML两个信号。V1通过一片EL7212进行驱动,配合滤波电容和钳位电路实现。

V2驱动器选用一片MAX4426,通过V2HM控制其电源端(将V2HM反向)。当V2HM为高的时候,MAX4426产生峰峰值9V的输出信号,当V2HM由高变低时,MAX4426的电源端被升到18V,从而产生出满足要求的三电平信号V2。电子快门脉冲电压为VAB~VAB+40V(峰峰值为40V),使用分立元件产生,具体电路的原理图如图2所示。
2011113010142497.jpg



5、CCD驱动时序设计


KAI-0340S工作需要6路驱动信号:分别是两相水平移位寄存器时钟H1、H2;复位脉冲时钟RL;两相垂直转移时钟V1、V2(分解成V2HM和V2ML);电子快门时钟SUB。CCD成像的一个工作周期分三个阶段:曝光阶段,行间转移阶段和水平移位阶段。CCD工作时,首先底层出现电子快门脉冲将光敏区的电荷清除,电子快门脉冲之后开始图像信号积分阶段,积分完成后V2上的高电平把光敏区的包含图像信息的电荷包转移到挡光的垂直CCD上,接下来通过V1和V2的互补时钟逐行把垂直CCD中的电荷包转移到水平CCD上,再通过H1和H2的互补时钟逐个把水平CCD上的电荷包转移到浮置扩散输出节点,进行电荷测量供后续电路处理,同时CCD又可进行下一帧图像的曝光。KAI-0340S的详细驱动时序关系参见其使用说明书。其中实现H1和H2部分程序如下:
2011113010142752.jpg

20111130101427565.jpg


本文选用的FPGA是Xilinx公司的XC2S150,一共有150,000个逻辑门,满足整个系统的所有需求;采用硬件描述语言VHDL进行逻辑设计,用ModelSim仿真,关键部分的波形见图3。
20111130101428744.jpg

6、结论


本文的创新是:先将V2三电平进行分解,之后巧妙地利用两个驱动器和钳位电路来实现三电平阶梯波形的时序驱动;采用FPGA器件来设计行间转移面阵CCD驱动时序。系统设计完成后,由示波器测试各路输出的驱动信号,所显示的波形与仿真波形一致,得到令人满意的结果。因此本文的驱动电路设计方案能够满足的KAI-0340的性能要求,可以用来驱动行间转移型面阵CCDKAI-0340S。

关键字:FPGA  行间转移面阵  CCD  驱动电路 引用地址:基于FPGA的行间转移面阵CCD驱动电路设计

上一篇:51单片机加CPLD让系统更高效
下一篇:张刚:基于FPGA的视频处理是未来方向

推荐阅读最新更新时间:2024-05-02 21:48

ARM、FPGA和DSP的特点和区别是什么?
DSP(digital singnal processor)是一种独特的微处理器,有自己的完整指令系统,是以数字信号来处理大量信息的器件。一个数字信号处理器在一块不大的芯片内包括有控制单元、运算单元、各种寄存器以及一定数量的存储单元等等,在其外围还可以连接若干存储器,并可以与一定数量的外部设备互相通信,有软、硬件的全面功能,本身就是一个微型计算机。DSP采用的是哈佛设计,即数据总线和地址总线分开,使程序和数据分别存储在两个分开的空间,允许取指令和执行指令完全重叠。也就是说在执行上一条指令的同时就可取出下一条指令,并进行译码,这大大的提高了微处理器的速度。另外还允许在程序空间和数据空间之间进行传输,因为增加了器件的灵活性。其工作原理是
[单片机]
FPGA技术在车载测试中的应用
汽车在出厂之前,从研发设计到整车下线要经过严格的检测,以确保产品的质量以及各分系统工作的可靠性和安全性。随着汽车电子技术的发展,测试项目和测试要求越来越多,测试系统的可扩展性受到更多的关注。新一代汽车电子系统测试技术着重于在行驶中完成各种机电系统运行状态的测试,以便缩短测试时间,完成可靠性检测。汽车测试类型多样,涉及到不同的信号类型。例如,通过多测点的温度测量来检验空调系统的功效;通过监控CAN网络以保证各控制单元或设备间正常通信;通过加速度测量来验证平顺性。这些不同性质的测试,往往需要相应的测试设备来完成,这就要求工程师分别去熟悉这些不同的测试设备。 为了保证顺利完成试验目的,测试系统必须具备高度的可靠性。例如,在汽车碰撞试验中
[测试测量]
<font color='red'>FPGA</font>技术在车载测试中的应用
Cadence FSP:FPGA-PCB系统化协同设计工具介绍
Cadence FPGA System Planner(FSP)是一款完整性高的FPGA-PCB系统化协同设计工具。此次主要为大家介绍FPGA System Planner的基本情况,详见原文。   在较新的FPGA设计中几乎有超过千个可编程的I/O引脚,若再包含多个FPGA时,工程师就会遇到初期规划I/O引脚,并配合后期layout placement时该如何最佳化的瓶颈及困难。Cadence OrCAD and Allegro FPGA System Planner便可满足较复杂的设计及在设计初级产生最佳的I/O引脚规划,并可透过FSP做系统化的设计规划,同时整合logic、schematic、PCB同步规划单个或多个FP
[模拟电子]
Cadence FSP:<font color='red'>FPGA</font>-PCB系统化协同设计工具介绍
Microchip将其中等带宽FPGA静态功耗减半 可用于汽车应用
边缘计算系统需要紧凑型可编程设备,并具有低功耗及较小的发热区域,从而可以取消风扇和其他散热装置的使用,同时具备强大的计算能力。8月10日,Microchip Technology(美国微芯科技公司)宣布,通过将其中等带宽现场可编程门阵列(FPGA)和FPGA SoC器件的静态功耗降低一半,并为它们提供与同类所有器件相比最小的发热区域、最佳性能和计算能力,可解决上难题。 (图片来源:Microchip Technology) Microchip FPGA业务部副总裁Bruce Weyer表示:“新型PolarFire FPGA和FPGA SoC降低了客户的系统成本,同时也使他们能够在不牺牲带宽的情况下应对热管理挑战。屡获
[汽车电子]
Microchip将其中等带宽<font color='red'>FPGA</font>静态功耗减半 可用于汽车应用
基于ARM的可定制MCU可承担FPGA的工作
  如今的产品生命周期可能短至六个月,因此在这种情况下要想取得定制ASIC的低成本、低功耗和高性能优势几乎是不可能的。定制ASIC的设计周期通常要一年左右,这通常要比终端产品的生命周期还要长。另外,标准单元ASIC还具有NRE费用(非重复工程成本),对于基本的0.13微米设计,该成本约为30万美元,而对于具有复杂IP内容的90nm设计将超过100万美元。因而当每年的批量小于10万片时,从经济角度看就不具有可行性。   为此人们研发出了平台化或结构化ASIC,它们具有预设计的IP块和可编程的ASIC门,可显著降低成本并缩短设计周期。这种方案将设计周期从一年甚至更长的时间缩短到几个月,还将NRE成本降低到大约15万美元,不过与门阵列
[单片机]
基于ARM的可定制MCU可承担<font color='red'>FPGA</font>的工作
FPGA的轮询合路的设计和实现
    针对高密度接口设计中基于字节处理和整包处理的转换问题,本文提出了分片轮询调度和改进式欠账轮询调度相结合的调度策略,该策略在很大程度上保证了公平性和稳定性。仿真结果显示,该设计完全符合要求。 1、 引言 4X2.5G线路接口卡是T比特路由器的一种重要接口,属于高密度线路接口,这种接口是当前路由器设计中的一个重点和难点。所谓高密度,指的是在一块绕路接口卡上提供多个接口。之所以出现高密度线路接口的需求,是因为互联网的规模不断的扩大,对路由器的接入能力提出了日益增大的需求,如果还沿用单板单接口的设计方法将导致路由器的物理规模不断的扩大,不符合现代设备发展的趋势。在4X2.5G线路接口卡的设计中,笔者采用单片多路的SDH处理
[嵌入式]
基于SX8121的马达驱动电路设计及其应用
引言 目前市场上大多数电动剃须刀和电推剪等小型电器的马达一般由电池直接驱动,开关仅用于马达的上电或断电控制。对于充电电池,这会导致在电量较低时过度放电和泄露,不利于延长电池和马达的使用寿命,且此种设备的充电回路也比较复杂。不可充电的设备大多使用两节干电池驱动,不仅尺寸较大,成本也较高。 升特半导体(Semtech)有限公司最近推出了一种可定时的马达驱动控制芯片SX8121。采用1V DC供电,仅需单节电池,充电回路仅需4个电阻和2个LED指示灯,且可使用USB对镍氢电池充电。该芯片可广泛应用于电动剃须刀、理发器、电动牙刷等小型家电的设计和应用中。 SX8121简介 SX8121是只需1V供电的马达和LED控制器,它可以
[嵌入式]
用PowerPC860实现FPGA配置
    摘要: 介绍如何用PowerPC860(MPC860)进行FPGA(Xilinx的Virtex-II系列)的配置;给出进行FPGA配置所需的详细时序图和原理图。本配置基本原理对其它FPGA的配置也适用。     关键词: PowerPC860 FPGA Xilinx 1 概述 MPC860是基于PowerPC结构的通信控制器。它不仅是集成的微处理器,而且将很多外设的功能也集成在一起。MPC860具有存储控制器,其存储控制器的功能很强,可以支持各种存储器,包括各种新型的DRAM和Flash,并可以实现与存储器的无缝接口;而且使用嵌入式操作系统VxWorks和开发环境Tornado开发非常方便。
[应用]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved