蓝牙技术是当今应用最多的技术之一,采用蓝牙技术,我们可以实现数据的传输以及其它功能。上篇文章中,小编对蓝牙手机的功能和选择要点有所阐述。为增进大家对蓝牙的了解,本文将对蓝牙配对和连接的过程以及蓝牙的发展予以介绍。如果你对蓝牙相关内容具有兴趣,不妨继续往下阅读哦。
一、蓝牙配对过程、连接建立过程
蓝牙的建立过程是一个复杂的过程,即使有过相当一段工作和使用经验的人,如果不仔细去了解还是理解不全。
平时我们用蓝牙耳机听音乐,和不同的设备共享文件,打电话等,都有一个配对--连接--传输数据的过程。
蓝牙配对过程,其实就是一个认证的过程。
为什么不配对便无法建立连接?
任何无线通信技术都存在被监听和破解的可能,蓝牙SIG为了保证蓝牙通信的安全性,采用认证的方式进行数据交互。同时为了保证使用的方便性,以配对的形式完成两个蓝牙设备之间的首次通讯认证,经配对之后,随后的通讯连接就不必每次都要做确认。所以认证码的产生是从配对开始的,经过配对,设备之间以PIN码建立约定的link key用于产生初始认证码,以用于以后建立的连接。
所以不配对,两个设备之间便无法建立认证关系,无法进行连接及其之后的操作,所以配对在一定程度上保证了蓝牙通信的安全,当然这个安全保证机制是比较容易被破解的,因为现在很多个人设备没有人机接口,所以PIN码都是固定的而且大都设置为通用的0000或者1234之类的,所以很容易被猜到并进而建立配对和连接。
蓝牙的连接过程
现在的蓝牙芯片供应商提供的技术支持能力相当强大,有完整的硬件和软件解决方案。对于应用而言,提供了固件用于实现底层协议栈,提供了profile库及源代码规范了各种应用,开发人员只要专注于应用程序开发就可以了。对于蓝牙底层的一些东西往往不甚了了。以前我也是这样子的,最近在做一个自动搜索以实现自动连接的应用,发现还是需要了解一些底层的机制的。
我们可以很容易的进行操作在一个手机和免提设备之间建立连接,那么这个连接是怎么建立起来的呢?
首先,主设备(master,即发起连接的设备)会寻呼(page)从设备(slave,接收连接的设备),master会已跳频的方式去寻呼slave,slave会固定间隔地去扫描(scan)外部寻呼,即page scan,当scan 到外部page时便会响应response该page,这样两个设备之间便会建立link的连接,即ACL链路的连接。当ACL 链路连接建立后,主设备会发起channel的连接请求,即L2CAP的连接,建立L2CAP的连接之后,主设备采用SDP去查询从设备的免提服务,从中得到rfcomm的通道号,然后主设备会发起rfcomm的连接请求建立rfcomm的连接。然后就建立了应用的连接。
即link establish-》channel establish-》rfcomm establish-》connection。
二、蓝牙的发展
蓝牙的支持者很多,从最初只有五家企业发起的蓝牙特别兴趣小组(SIG)发展到现在已拥有了近3000个企业成员。根据计划,蓝牙从实验室进入市场经过三个阶段:
第一阶段是蓝牙产品作为附件应用于移动性较大的高端产品中。如移动电话耳机、笔记本电脑插卡或PC卡等,或应用于特殊要求或特殊场合,这种场合只要求性能和功能,而对价格不太敏感,这一阶段的时间大约在2001年底到2002年底。
第二阶段是蓝牙产品嵌入中高档产品中,如PDA、移动电话、PC、笔记本电脑等。蓝牙的价格会进一步下降,估计其芯片价格在10美元左右,而有关的测试和认证工作也将初步完善。这一时间段是2002年~2005年。
第三阶段是2005年以后,蓝牙进入家用电器、数码相机及其他各种电子产品中,蓝牙网络随处可见,蓝牙应用开始普及,蓝牙产品的价格在2美元~5美元之间,每人都可能拥有2-3个蓝牙产品。
就目前而言,蓝牙产品的市场化正处于第二阶段的起步期。预计到2006年底,蓝牙将会有超过10亿的无线用户,其中包括5亿多使用无线互联网访问服务的用户。第三代移动通信技术将为蓝牙互联提供更大的市场,蓝牙互联技术允许手机、便携设备、个人电脑、笔记本电脑和第三方的接入设备互相连接在一起。安装蓝牙模块的设备将从2001年的不足100万台增加到2006年的16亿台。
蓝牙技术的主要市场将是低端无线联网领域,提供简单方便的无线联网技术是业内最初研发“蓝牙”标准的初衷。
上一篇:蓝牙技术让疫情时代的安全复工变得不再困难
下一篇:CES 2021新品大盘点
推荐阅读最新更新时间:2024-11-07 07:39
- 不止射频:Qorvo® 解锁下一代移动设备的无限未来
- 物联网助力电动车充电设施走向未来
- Nordic Semiconductor推出nRF54L15、nRF54L10 和 nRF54L05 下一代无线 SoC
- 射频 FDA 如何使用射频采样 ADC 来增强测试系统
- 基于OPENCV的相机捕捉视频进行人脸检测--米尔NXP i.MX93开发板
- Nordic Semiconductor nRF54H20 超低功耗 SoC 荣获 2024 年世界电子成就奖 (WEAA)
- 英国测试装配神经系统的无人机:无需经常落地进行检查
- 超宽带的力量:重塑汽车、移动设备和工业物联网体验
- 意法半导体发布面向表计及资产跟踪应用的高适应易连接双无线IoT模块
- EVAL-AD7747EBZ,用于 AD7747、24 位、汽车 ADC 的评估板
- LM2931AD50R 超低压降稳压器的典型(可调输出)应用
- SR086 12.6VDC 输出可调离线无电感开关稳压器的典型应用
- Type-C口最小系统板
- DC1211A-A,使用 LTC3528EDDB 1A、1MHz 同步升压转换器的演示板,在 DFN 自动突发模式下具有输出断开连接
- 1 至 4V DC 至 DC 单路输出手机电源
- LT1764EFE-3.3 3.3 VIN 至 2.5 VOUT LDO 稳压器的典型应用
- 使用 Diodes Incorporated 的 PT8A 3519C 的参考设计
- 基于物联网的户外环境检测装置(STM32、APP、WIFI).zip
- TWR-MCF51AG: ColdFire MCF51AG塔式系统模块