功率型LED结温和热阻在不同电流下性质研究

最新更新时间:2011-05-16来源: OFWEEK半导体照明网关键字:LED  结温  热阻  功率型 手机看文章 扫描二维码
随时随地手机看文章

  引言

  全球照明协会表示在不远的将来,大功率发光二极管(Powerlight-emittingdiodes)将在普通照明领域起到至关重要的作用。自1994年以来,大功率LED得到迅猛发展,已经在诸多领域(如路灯、汽车尾灯、LCD背光源等)取代了传统光源。近年来,LED技术的发展更是日新月异,其光效的提升和器件成本的下降服从类似于摩尔定律的海茨(Haitz)定律,即LED价格每10年降低为原来的1/10,性能则提高20倍。

        国际上LED技术正在向大功率、高亮度、高效率、低成本方向发展。功率LED的光学特性和电学特性强烈依赖于结温。随着LED功率的增大,过高的结温会影响LED的寿命和可靠性,散热问题变得日益严峻。因此,了解功率LED结温和热阻的变化特性就变得尤为重要。文中通过正向电压法和红外热像仪法,对功率LED的结温和热阻随电流的变化特性进行了研究。

  1、功率LED结温测量方法

  按标准,热阻的一般定义是:在热平衡的条件下,两规定点(或区域)温度差与产生这两点温差的耗散功率之比(单位°C/W或K/W)。热阻的大小直接影响LED的寿命、出光率、发光强度等。对于LED,由于热源在pn结处,其最高温度通常指pn结的温度,即结温Tj,它也是影响LED可靠性的重要参数。目前比较成熟的结温测量方法有红外热像仪法和正向电压法(又称标准电学法)。红外热像仪法通过测量器件工作时芯片表面的红外辐射给出芯片表面的二维温度分布,以此来表征结温及其分布,这种方法只能测量未封装的器件,对成品器件则需要开封才能测量。正向电压法是一种非破坏性的芯片温度测量方法,与红外热像法相比正向电压法具有灵敏度高、测量迅速、试验成本低廉等优点。

  2、实验样品

  所测试的样品,均为路灯和夜景照明用功率LED,包括1WInGaN蓝色、绿色LED、1WAl-GaInP红色、橙色LED以及1W、3W蓝宝石衬底InGaN白光LED,所有颜色芯片均用金属铝做散热基板材料。1W样品为一个1mm×1mm芯片。3WLED为两个1W芯片并联结构,白光是通过在In-GaN蓝光LED表面涂敷YAG荧光粉实现。

  3、实验及结果分析

  测试时环境温度设置为25°C,驱动电流从100mA上升到1A,增长间隔为100mA。

   3.1 正向电压法测量热阻分析

  图1是环境温度为25°C,1WAlGaInP红色和橙色LED的热阻随驱动电流的变化趋势图。由图1可知,功率为1W的AlGaInP红色和橙色LED热阻均随驱动电流的增加而增大,在相同驱动电流下,橙色AlGaInPLED的热阻值要高于红色LED。在驱动电流的变化过程中,橙色LED的热阻值从10.28°C·W-1上升到15.05°C·W-1,红色LED热阻值从9.85°C·W-1增大到13.25°C·W-1。造成此种差异的原因是由于在相同的输入功率下,橙色LED的电光转化效率低于红色LED造成的,亦即在相同注入电流时,AlGaInP橙色LED比红色LED有更高的结温。

AlGaInP红色和橙色LED热阻变化趋势图

图1:AlGaInP红色和橙色LED热阻变化趋势图

  图2是环境温度为25°C,1WInGaN绿色和蓝色LED的热阻随驱动电流的变化趋势图。从图中可以看出,InGaN绿色和蓝色LED的热阻一样随驱动电流的增加而变大,其中蓝光LED的热阻值由10.02°C·W-1上升为21.57°C·W-1,而绿光的热阻值由13.74°C·W-1上升为17.68°C·W-1,其变化幅度较蓝光LED要小。蓝光LED在大于额定工作电流350mA的驱动电流下工作时,热阻的变化趋于缓和,由于器件在大于额定电流下工作时,器件内部的各种缺陷、材料的不匹配度等达到了稳定值,电流的增加对他们的影响不像小电流阶段那么明显了(除非电流加到足以使LED内电极翘起、金线熔断),导致随驱动电流的增加,器件内部阻碍热流传导到外部的障碍并没有太大变化。文中认为热阻的升高可能是由于大电流导致的电流拥挤效应,电流拥挤效应又导致了电光转换效率的减少(辐射复合区域减少),虽然输入的电功率有所增加,但随着电流增加,输出的光功率却减少了,并最终导致了热阻的上升。

InGaN绿色和蓝色LED热阻变化趋势图

图2:InGaN绿色和蓝色LED热阻变化趋势图

图3是环境温度为25°C,1WInGaN白色和蓝色LED的热阻随驱动电流的变化趋势图。虽然白光LED要比蓝光LED多出一层YAG荧光粉,但如图3所示,二者的热阻值差异不大,表明YAG荧光粉并未严重影响1W白光LED的散热,功率LED的内部热量靠辐射散发的很少,主要还是靠芯片传导到衬底,衬底传导到铝基板的方式散发到外部的。

InGaN基白色和蓝色LED热阻变化趋势图

图3:InGaN基白色和蓝色LED热阻变化趋势图

  图4是3W白光LED热阻随驱动电流变化的趋势图,其中,图4(a)是美国照明研究中心的Jayasinghe等人在环境温度25°C时测得的3W白光LED热阻在不同驱动电流下的变化趋势图,图4(b)是在相同环境温度下测得的3WInGaN基白光LED热阻趋势图。两种试验用的LED芯片大小相同,但美国照明研究中心所测量的管子比笔者的封装要大些。图4(a)中驱动电流从100~800mA变化时,热阻值由8°C·W-1上升到15°C·W-1,在相同的电流变化范围内,图4(b)热阻值由7.5°C·W-1上升至19°C·W-1,差异较小,说明我国大功率白光LED发展迅速,其散热性能已经比较好。

InGaN基白色和蓝色LED热阻变化趋势图

  图4:(a)美国照明研究中心测量的3W白色LED热阻随电流变化趋势图;(b)3W白色LED热阻随输入电流变化趋势图

    3.2 正向电压法测量结温分析

  表1是环境温度25°C,驱动电流变化范围从100~1000mA时,不同颜色1W功率LED在相应电流下的结温。从表中可以看出,各种颜色的功率LED结温均随驱动电流的增加而上升。分析认为,随着驱动电流的加大,会导致LED内部产生电流拥挤效应,电流拥挤会导致光输出效率的减少(辐射复合减少),因此导致结温上升,而结温的升高会导致LED材料热导率的变化。一些小组研究得出GaN导热系数在25~175°C时从2.50W/(cm·K)下降到1.75W/(cm·K)[4];其他人研究说温度从25~125°C时,GaN导热系数由2.0W/(cm·K)下降至1.6W/(cm·K)[5]。反过来,材料导热系数的下降又会制约LED的热传导,进一步提高LED结温,如此相互制约,甚至会形成恶性循环。另外,过大的电流还会导致LED各接触层之间失配度的变化、焊料的退化等,也会导致LED温度的升高。

正向电压法测得的各种颜色1W功率LED在不同驱动电流下的结温值

表1:正向电压法测得的各种颜色1W功率LED在不同驱动电流下的结温值

  其次,从表中可以看出,由AlGaInP材料制作的红色、橙色LED结温在相同驱动电流下结温差距不大,由InGaN材料制作的蓝色、绿色、白色LED的结温也很相似,而由AlGaInP材料制作的LED的结温要远远低于InGaN材料制作的LED。这是由于材料禁带宽度差异,在相同输入电流下InGaN材料制作的LED电压值要高于AlGaInP材料制作的红色、橙色LED,虽然InGaN材料LED的光电转换效率要高些,但其电功率转换成热功率的值仍要大于Al-GaInP红色、橙色LED。即在相同驱动电流下,In-GaN材料LED产生的热功率要大于AlGaInP材料的红色、橙色LED。而且,由于InGaN材料的P型掺杂浓度低于AlGaInP材料,导致InGaN芯片的串联欧姆电阻要大于AlGaInP材料的串联欧姆电阻,大电流条件下串联欧姆电阻产生的热量[7]也是导致两种芯片LED结温不同的重要因素。

  再次,AlGaInP材料制作的红色LED的结温要低于相同芯片材料的橙色LED,反证了文中关于图2
的解释是合理的。

    3.3 正向电压法、红外热像仪法比较

  采用实验室自制的1mm×1mm芯片进行了正向电压法和红外热像仪法测量结温的方法比较。图5是两种方法测得的1W蓝光LED在不同驱动电流下的结温变化曲线。由图可以看出,两种方法测得的结温值基本相同,无论哪种方法,结温均随驱动电流的增加而增大。正向电压法得到的是平均温度效应。相比之下,红外热像仪法能够快捷地获取器件表面的温度分布图像,展现芯片质量的全局概况,并能清晰显示出可能导致器件热失效主要因素——热斑的分布密度,尤其近些年来,通过结合现代高速发展的计算机技术、微电子技术和图像处理技术,光学测温技术的灵敏度、精度、稳定性和自动化程度都得到了大幅度提高,其应用领域也越来越广泛。但其缺点是只能测量未封装的裸露芯片,封装后的芯片必须拆封后才能进行测量,并且测量仪器昂贵。

正向电压法和红外热像仪法测得的蓝光LED结温

图5:正向电压法和红外热像仪法测得的蓝光LED结温

        图6是利用红外热像仪测得的蓝光LED在驱动电流为800mA时的表面温度分布图。由图可以看出,该种倒装结构的大面积区域温度分布比较均匀,最高温度为79.37°C,主要集中在N型电极压焊点附近的P区。最低温度为70.43°C,温差较小,主要原因是这种LED芯片采用了环形插指电极结构减小了电流扩展路径,使电流在N型区流动的横向电阻减小,产生热量降低,所以器件温升小。

1W 蓝光LED表面温度分布

图6:1W 蓝光LED表面温度分布

  4、结论

  通过对不同驱动电流下各种颜色LED结温和热阻的测量发现,任何颜色LED的热阻均随驱动电流的增加而变大,其中InGaN材料的蓝光、白光LED在小于额定电流下工作时,热阻上升迅速;驱动电流高于额定电流时,热阻上升速率变缓。其他颜色LED热阻随驱动电流变化速率基本不变。结温也会随驱动电流的增加而变大。相同驱动电流下,由AlGaInP材料制作的红色、橙色LED结温要低于In-GaN材料的蓝色、绿色、白色LED的结温。比较了正向电压法和红外热像仪法测得的蓝光LED结温值,分析了两种方法的优缺点。结果表明,红外热像仪法能够直观地反映芯片的最高温度区域,器件的失效最终还是由最高温度决定的;但正向压降法测得的结温与红外法差别不大,作为一种快捷方便非破坏性的方法,可以首先被普遍采用。

关键字:LED  结温  热阻  功率型 编辑:探路者 引用地址:功率型LED结温和热阻在不同电流下性质研究

上一篇:LED照明电源中几个核心设计难题的探讨
下一篇:色彩照度计在LED灯具测量中的应用

推荐阅读最新更新时间:2023-10-18 15:20

51单片机8*8点阵LED显示原理及程序
在8X8点阵LED上显示柱形,让其先从左到右平滑移动三次,其次从右到左平滑移动三次,再次从上到下平滑移动三次,最后从下到上平滑移动三次,如此循环下去。 1. 程序设计内容 8X8点阵LED工作原理说明 :8X8点阵共需要64个发光二极管组成,且每个发光二极管是放置在行线和列线的交叉点上,当对应的某一列置1电平,某一行置0电平,则相应的二极管就亮;因此要实现一根柱形的亮法,如图49所示,对应的一列为一根竖柱,或者对应的一行为一根横柱,因此实现柱的亮的方法如下所述: 一根竖柱:对应的列置1,而行则采用扫描的方法来实现。 一根横柱:对应的行置0,而列则采用扫描的方法来实现。 2. 硬件电路 3
[单片机]
51单片机8*8点阵<font color='red'>LED</font>显示原理及程序
led产业黄金增长期就在未来五年
  LED被称为第四代照明光源或绿色光源,是一种半导体固体发光器件。在1955年时,美国无线电公司的RubinBraunstein发现了砷化镓(GaAs)及其他半导体合金的红外线放射作用,1962年美国通用电气公司(GE)的NickHolonyakJr开发出可见光的LED。不过,LED真正的起飞是在1990年代白光LED出现后,才开始渐渐被重视,应用面越来越广。      近几年,LED面临爆发性增长,主要是缘于各国政策的支持以及下游电视背光源需求的急速增长、未来成本的下降所带来的大规模通用照明替代等。可以说,未来5年,将是LED产业的黄金增长期。      世界五大LED制造商      面对全球气候变化与不断高涨的能源价格,各
[电源管理]
海洋光学为LED及其它辐射源分析的理想之选
海洋光学(Ocean Optics)现供应一种新的光学测量系统,可用于LED、灯、平板显示器、其它辐射源及太阳辐射的光谱辐射分析。新型的Jaz-ULM-200尺寸小巧,拥有强大的微处理器和低功耗显示面板。它使用方便,用途广泛,可以替代标准光学计量仪和辐射计量仪。 Jaz由一系列迭加式组件构成,适用于各类用途。Jaz-ULM-200组件包含有CCD光谱仪模块、带显示面板的微处理器模块,能满足各种辐射测量。 不同于传统的测光仪表,JAZ的用户可以脱离计算机获取、处理及存储完整的光谱数据。仅需按动一个按钮三次,存储在SD卡上的系统辐照测量软件就会从选定的光源上收集完整的光谱辐照信息。随后对这类数据进行后处理
[电源管理]
解析:LED开关电源技术四大趋势
随着 LED照明 产业的快速发展, LED 电源市场也快速膨胀。一方面,传统电源厂商纷纷推出LED电源产品,另一方面,众多创业型的企业也纷纷成立。根据专家分析未来LED电源的四大发展趋势。    一、非隔离DC/DC技术迅速发展   近年来,非隔离DC/DC技术发展迅速。目前一套电子设备或电子系统由于负载不同,会要求电源系统提供多个电压挡级。如台式PC机就要求有+12V、+5V、+3.3V、-12V四种电压以及待机的+5V电压,主机板上则需要2.5V、1.8V、1.5V甚至1V等。一套AC/DC中不可能给出这样多的电压输出,而大多数低压供电电流都很大,因此开发了很多非隔离的DC/DC,它们基本上可以分成两大类。一类在内部含有功率
[电源管理]
心得:如何挑选LED灯带及如何安装
购买 LED灯 带注意查看的几点 现在LED灯带可以算是家装照明不可缺少的产品之一,在购买时需要注意6点要素。LED灯带因为生产的门槛低,有不少工厂和作坊都有这一项目,导致LED灯带市场鱼龙混杂,生产的产品质量也是参差不齐。没有相关知识和经验的人容易被骗买到劣质灯带。但是有经验的人士还是有办法去识别,正规的生产商生产的LED灯带和山寨版的LED灯带(即指在出租屋内全凭人工作业生产出来的产品)是能从外观上一眼看出来的。下面我们来谈一下如何凭眼睛来识别LED灯带的质量好坏: 1、看焊点。正规的LED灯带生产商生产的LED灯带是采用SMT贴片工艺,用锡膏和回流焊工艺生产的。因此,LED灯带上的焊点比较光滑而且焊锡量不会多,焊
[电源管理]
确保LED显示屏品质的关键技术因素
近年来光电产业的突飞猛进得到社会广泛的重视,作为人机信息视觉传播媒体的显示产品和技术得到迅速发展。随着产品标准体系的形成和系列标准的实施,LED显示屏产业在向健康有序的方向发展。 LED显示屏是目前一块利润较丰厚的市场,除了大型体育场馆,还广泛应用在高速公路收费站、公路标识牌、机场航班信息显示、码头、港口、火车站、隧道、游戏机、城市广场室外广告牌、政府机关大楼和停车场等,用于实时显示一些动态信息。 一直以来,由于制造工艺等原因,LED的特性有很大不同,当把这些LED制成的显示模组集成为LED显示屏时,如果没有对这些差异进行足够的补偿,那么将导致LED电子显示屏亮度、颜色的差异清晰可见;同时LED显示屏在安装使
[电源管理]
LED照明的热解决方案介绍
   近年来,随着电子产品的高密度、高集成度,热解决方案的重要性越来越高,LED照明也不例外,也需要热解决方案。虽然白炽灯和荧光灯的能量损失大,但是大部分能量都是通过红外线直接放射出去,光源的发热少;而LED,除了作为可视光消耗的能量,其它能量都转换成了热。另外,由于LED封装面积小,通过对流和辐射的散热少,从而积累了大量的热。    热解决方案:   接下来来考虑怎么制定热解决方案。热解决方案简单的说就是解决因为热产生的各种问题。主要有:   1. 因为热膨胀导致弯曲和龟裂   2. 电子电路的运行障碍   3. 材料品质恶化   除此之外,也会担心如果发热会不会损坏设备?为了避免这些问
[电源管理]
<font color='red'>LED</font>照明的热解决方案介绍
聊聊IGBT功率模块的结温计算及其模型
1. 简介 电机控制器的功率模块,即IGBT器件和续流二极管,在开关和导通电流会产生损耗,损失的能量会转化成热能,表现为功率模块发热。电机控制器功率模块的可靠性和寿命极大地受到工作结温Tj的影响。虽然IGBT和二极管的PN结温度无法直接测量,但可以通过间接的测量和计算来获取。当前,电机控制器功率模块结温的计算已成为大家普遍关注的焦点。下面我们来聊聊功率模块的结温计算及其模型。 对于功率模块中每个IGBT和二极管,损耗热功率都来自结,其值最高。它的瞬时值等于IGBT或二极管的I x V乘积。热量流过结构的热阻抗并散发到周围环境中。其热阻抗越低,结温与周围环境温度的差值越小。采用热等效回路模型来描述功率模块器件的热行为,如下图1:
[嵌入式]
聊聊IGBT<font color='red'>功率</font>模块的<font color='red'>结温</font>计算及其模型
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved