UL对LED灯具散热基板要求严格 成本与安全成两难

最新更新时间:2011-07-27来源: 中国光电网关键字:LED  散热基板 手机看文章 扫描二维码
随时随地手机看文章

        随着LED照明产品暨相关组件第一版安全标准《ANSI/UL 8750》于2009年底正 式生效,并取得美国国家标准机构(American National Standard Institute,ANSI)与加拿大标准协会(Canadian Standard Association,CSA)认可,成为北美地区的通用标准后,更加速了这场变革。 

        安规标准的出炉,意味着业界有一个更明确的安全规范可依循,也促使LED灯具企业终于可以放心地火力全开,大量开发LED照明产品。

        LED虽然具有节能的优势,却也有众所周知的散热难题;相比传统灯具,LED功率低,其输入的电能会大量转变成热能,再加上为了获得大功率,常需要多个并联使用,故散热基板必须提供足够的散热能力。

       身负LED效能关键的散热基板,其材料的选用,对于LED灯具的安全性具有极大的影响;如何做周延的考虑,以兼顾产品安全与散热的效能,是业者的一项严格挑战。

       本文将透过对相关标准的解构,点出散热基板必须注意的安全问题,以利LED厂商对散热基板的安全设计及成本考虑有更深入的了解,并提前做好准备。

  散热关键在于LED芯片封装与基板设计 

        除了高功率的LED外,大多数的LED灯具为了要达到与传统灯具相当的照明亮度,必须将LED芯片封装设计成不同形状的数组;又为了要达到控制的要求,因此最好的方式就是将LED芯片封装焊接到电路板上。由于LED照明功率与发热功率比大约为1:4,随着LED功率的差异,配合的电路板也必须有所不同。

        举例来说,用在一般手电筒或指示用的低功率LED,因电路简单,间距较宽,所以一般的酚醛树脂纸基板 (Paper Phenolic ∠XPC、FR-1) 或玻璃纤维含浸环氧树脂基板 (Fiberglass reinforced epoxy ∠FR-4) 就足够提供机械支撑,并透过空气自然对流即可散热,达到控制目的。若要达到大功率高照明度的要求,因发热量的增加与电路排列密度的提高,将使上述基板无法提供足够的散热能力。

        LED灯具对散热有严苛要求,又要兼顾有限的散热面积及电路间的绝缘,基板设计就显得格外重要。陶瓷基板虽然可以同时满足散热与绝缘要求,然而陶瓷基板的制作难度非常高,本身的脆性也不利于大面积的数组,业者不得不采用将绝缘材料贴在铝或铁质等散热基板上的多层结构,利用接脚的焊接,将芯片封装的热直接传导到散热材料上,甚至还有将绝缘材料、或者是防焊油墨等涂布材料改为散热材质的构想,以达到更佳的散热表现。

  严格的散热要求 成本与安全成两难 

        灯具的安规要求如同金字塔一样,透过预选(Pre-selection)机制,选择符合认证的材料,将可减少最终产品所需通过的耐久性测试项目。因此,LED模块内的材料皆须通过对应的认证,以确保灯具产品能够长久使用而不致发生危险。

        UL 8750即要求LED基板必须具备对应的电路板使用温度认证与耐燃等级认可(列于UL 796之中);而电路板所用的有机绝缘材料或涂布材料,也必须取得对应的长时间使用温度(或称为相对热指数,Relative Thermal Index, RTI,列于UL 746E之中)与耐燃等级认可。

        这些要求均会受到LED灯具产品实际使用时的内部温度影响:内部温度愈低,对散热材料的温度等级要求也就愈低。然而,散热程度有赖于材料的改质,散热表现愈好的材料价格相对昂贵,使企业面临成本与安全要求两难的局面。

  取得市场认证材料商 寥寥可数 

        散热材料的配方多属机密或专利保护,因此散热基板的差异性很大,没有办法像FR-1、FR-4等业界长年使用的材料一样,通用且特性广为人知。此外,在取得相对温度指数(Relative Temperature Index, RTI) 高于90℃以上的认可时,均必须进行长达9到18个月以上的长时间测试,甚至可能出现无法一次就能取得有效结果的状况;加上在取得材料认可之后,又必须再进行2到4个月的电路板制作能力认可,种种原因使得长时间缺料的情况屡见不鲜。

        目前全球取得散热基板耐温认可的材料商寥寥可数,且多非大型制造商。关于已取得认可的厂商名单,可至UL的公开认证数据库查询 (http://database.ul.com/cgi-bin/XYV/template/LISEXT/1FRAME/index.html)。

  LED散热基板的认证障碍与突破点 

        除了本身具有足够散热能力的绝缘基板材料,其它用于结合铜箔线路与散热材料的中间绝缘材料层,皆须以结合后的结构进行耐温测试。

        依据标准,担负所有散热能力的绝缘材料,在RTI评估时,需要进行介电强度(Dielectric)、抗拉强度(Tensile Strength)、分层(Delamination)与耐燃(Flammability)等长时间热衰退分析。至于结合散热材料的复合结构,则必须进行介电强度、定宽度导体抗撕强度(Bond Strength)与耐燃的热衰退分析。

        得到适当的RTI之后,电路板制造商还必须制作适当的样品,再次进行在固定温度、不同宽度下的导体抗撕强度、分层结合性观察与涂布防焊材料的耐燃测试,以判定电路板制造商的制作能力。在适当的聚合条件环境下,散热材料的耐燃能力通常是无庸置疑;至于在其它特性的表现,对散热材料而言就是相当大的考验。

        尽管是新用途要求,为了达到铜箔与散热材料的结合性、尺寸安定性、耐温与耐燃性的要求,环氧树脂相较于压克力树脂(Acrylic) 或是硅树脂(Silicon),还是最方便的改质基质(Matrix)。

      材料的散热能力,大多是透过添加无机陶瓷粒子(不导电但导热,金属粒子则因会导电而无法采用)以达到散热要求;而添加量与分散的状况,皆会影响环氧树脂的结合性。

        一般情况而言,当重量添加超过10%,不但硬化的特性不好掌握,与铜箔导体的结合能力很有可能降低到标准以下,甚至也会发生脆化或者直接发生烘烤后分层的情况;分散情况不佳或者粒子形状不完美时,也会发生介电强度不均匀(heterogeneous或是anisotropic) 的情况。虽然奈米等级的粒子分散已证实能够减少添加量并维持散热特性,同时减少其它环境特性,但奈米等级的粒子成本高,如何能够将其大量添加到黏稠的环氧树脂后,仍维持奈米等级的存在与分散,也是高难度与高成本的挑战。

        结论

        LED散热基板维系高效率LED照明的发展,但其技术难度与障碍并不亚于LED芯片封装,该如何提前投入发展基板材料,如何克服LED散热基板的安全问题,将是维持中国LED照明产业竞争优势刻不容缓的思考关键。

关键字:LED  散热基板 编辑:探路者 引用地址:UL对LED灯具散热基板要求严格 成本与安全成两难

上一篇:利用LED做手电筒的好处
下一篇:汽车LED应用给电源管理IC带来机遇和挑战

推荐阅读最新更新时间:2023-10-18 15:30

成功的大功率LED照明设计离不开PPTC
大功率 LED照明 解决方案的开发厂家目前遇到的最大设计挑战是 散热设计 和 过热保护 ,他们必须攻克 LED 光源对热敏感性强的难题,因为热量过多或应用不当都会使LED光源的性能大打折扣。 理论和实践都已经证明,LED的性能和寿命与LED的PN结工作温度紧密相关。当LED芯片内结温升高10℃时,光通量就会衰减1%,LED的寿命就减少50%,过流、过压和过热都会显著地减少LED的发光性能和使用寿命。因此除了良好的 散热 设计,安全可靠的过热保护也是必须考虑的。 通常对LED而言,约20%输入功率转换为光,80%则转换为热。这取决于多种因素,发热可能与底层不规则以及声子发射、密封、材料等有关
[工业控制]
AGM超强力度拓展LED全彩屏市场
2017年6月25日— 日前,业界领先的FPGA供应商AGM(遨格芯)基于其在华东LED全彩屏市场的垄断性市场份额,进一步推广, 正式推出集成ARM Cortex M3 MCU的AG11K系列AG11KMCU,并继续保持原有FPGA价格供货。   目前在通用LED全彩屏市场,业界采用的主流方案通常是10K容量的FPGA作为驱动,而过去高性价比的主流芯片多采用Intel Altera Cyclone IV系列来完成。这种通用版方案的特征是: 1) IO管脚需求多,例如需要BGA256封装, 高PCB板成本; 2) FPGA的资源利用率为95%-99%,已经接近极限,若采用高一档次的FPGA,则由于成本上升客户产品将失去市场性
[半导体设计/制造]
蓝牙Meshled灯控方案详解
蓝牙技术受益于其智能、低功耗、高连接速度等特性,在物联网市场呈现爆发式增长是物联网工程师有目共睹的。在蓝牙领域另一热门关键词就是Mesh技术。自蓝牙技术联盟宣布蓝牙(Bluetooth®)技术开始全面支持Mesh网状网络以来,基于蓝牙Mesh的面向多种应用解决方案正在井喷,天工测控作为一家致力于GNSS模块、WiFi模块、蓝牙模块研发和产品解决方案制定的专业技术公司也推出了自己的蓝牙Mesh灯控方案。 蓝牙Mesh灯控方案 目前,蓝牙技术已被广泛应用于包括消费电子、汽车电子、医疗设备、智能家居甚至是工业领域在内的所有物联网智能产品中。蓝牙Mesh智能灯,只是智能家庭设备的开始,采用蓝牙Mesh方案的智能家庭设备,能够自
[电源管理]
电源生产流程大揭秘:曝光LED电源的生产过程
我们家主要生产LED电源,还真没有曝光过过程呢。正好让大家见识一下。主要应用在LED照明上面。现在应用普遍的是LED路灯上面。LED是冷光源,半导体照明自身对环境没有任何污染,与白炽灯、荧光灯相比,节电效率可以达到90%以上。在同样亮度下,耗电量仅为普通白炽灯的1/10,荧光灯管的1/2。如果用LED取代我们目前传统照明的50%,每年我国节省的电量就相当于一个三峡电站发电量的总和,其节能效益十分可观。 LED是一种绿色光源。LED灯直流驱动,没有频闪;没有红外和紫外的成分,没有辐射污染,显色性高并且具有很强的发光方向性;调光性能好,色温变化时不会产生视觉误差;冷光源发热量低,可以安全触摸;这些都是白炽灯和日光灯达不到的。它既能提供
[电源管理]
电源生产流程大揭秘:曝光<font color='red'>LED</font>电源的生产过程
LED显示屏三大主要问题分析
 LED显示屏是集电子、电力、计算机、通讯、信息、图像处理、光学、材料、结构等多学科技术于一体的高科技工程产品。这其中的任何一门学科领域里的相关工程技术问题均会影响整个显示屏的最终运行效果。一个完美的led显示屏必然是多学科技术的有机结合体。   LED是led显示屏的最重要的基本元素,本文主要就led显示屏的亮度、一致性和失效性等问题简要阐述了其成因,与LED的相互关系及相关改进的有效举措。    一、led显示屏亮度问题   LED亮度是显示屏亮度的重要决定因素。LED亮度越高,使用电流的余量越大,对节省耗电、保持LED稳定有好处。LED有不同的角度值,在芯片亮度已定的情况下,角度越小,LED则越亮,但显示屏的
[电源管理]
具点校正和灰度等级调光的16通道50mA降压型LED驱动器
加利福尼亚州米尔皮塔斯 (MILPITAS, CA) – 2011 年 9 月 20 日 – 凌力尔特公司 (Linear Technology Corporation) 推出一个集成了 55V 降压型控制器的 16 通道 LED 驱动器 LT3745。该 LED 驱动器为每通道加电至 75mA LED 电流,可驱动高达 36V 的串联 LED,从而使该器件非常适用于诸如大型 LED 广告牌等应用。每个通道都有单独的 6 位点校正电流调节和 12 位灰度等级 PWM 调光。加上 0.5μs 的最短 LED 接通时间,LT3745 提供了非常宽的动态对比度。点校正及灰度等级均可通过 TTL/CMOS 逻辑电路中的一个串行接口获得。L
[电源管理]
具点校正和灰度等级调光的16通道50mA降压型<font color='red'>LED</font>驱动器
LED驱动电源高温工作应用设计挑战
目前led照明驱动电源的五大市场需求趋势可归结为:高效率、高可靠性、对调光与非调光广泛的应用兼容性、体积越来越小、无光耦。 要满足应用市场对LED照明驱动电源越来越高的要求,LED驱动器供应商必须要有足够的技术储备,才能在这一市场上站稳脚跟。目前美国iWatt公司是这一市场的领先供应商之一,拥有专利的成熟的PSR(原边控制)控制技术,这一技术使得它可以开发出无需光藕等不适宜于LED驱动电源高温工作环境的应用设计,从而大大提高了LED驱动电源的可靠性。 此外,iWatt几年前就已开始调光的应用研究,并开发出了3610和3620系列LED控制IC。当电源设计者选用iWatt方案进行开发时,他们可以很轻松地解决发热与体
[电源管理]
<font color='red'>LED</font>驱动电源高温工作应用设计挑战
浅析LED车载显示面板传导模型和影响散热效果进行计算校验测试数据和ANSYS软件
随着LED生产工艺的不断发展,车载手机及其他显示需要亮度越来越高,散热也就成了不得不面临的棘手问题。本文首先阐述了温度上升对LED性能的影响,研究影响散热效果的主要因素,并结合车载显示等特点,提出了一种车载显示热学分析等效模型。然后针对目前车载显示主要采用的被动式散热方式,通过对车载模型进行热学测试计算以及ANSYS软件仿真,最后通过对测试模拟结果的系统分析,给出参考结论,为改善当前LED高亮度显示的散热设计提出了指导性意见。 面板行业对我们来说已不再陌生,在生活中随处可见,大到户外显示屏小到手机Pad这样的终端都有,而且随着技术进步车载显示出货量占了更大比例。LED作为新型高效节能光源,进入显示领域已日趋成熟。并且对于高亮度
[嵌入式]
浅析<font color='red'>LED</font>车载显示面板传导模型和影响<font color='red'>散热</font>效果进行计算校验测试数据和ANSYS软件
小广播
热门活动
换一批
更多
最新电源管理文章
更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved