LED控制应用及其对驱动/控制方案要求

最新更新时间:2011-09-11来源: 电子发烧友关键字:LED控制应用  驱动  控制方案 手机看文章 扫描二维码
随时随地手机看文章

    安森美半导体身为应用于高能效电子产品的首要高性能硅方案供应商,针对各种LED应用提供宽范围的LED驱动器方案,其中就包括用于可寻址标志和建筑物装饰照明两类常见应用的系列线性驱动器(详见下表)。这些驱动器能够精确地稳定LED电流,并包含可编程接口,利于软件控制。本文将以CAT4008、CAT4103和CAT9552为例,分别阐述其主要功能和基本工作原理,便于工程师的选型设计。

  

应用于标志及建筑物装饰照明的系列智能LED控制/驱动器 www.elecfans.com


 

  表1:安森美半导体应用于标志及建筑物装饰照明的系列智能LED控制/驱动器。

  针对LED广告牌等应用的恒流汲入型LED驱动器

  诸如广告牌标志、滚动横幅、智能车辆标志和体育计分板等LED应用需要采用多颗LED,通常包含多串LED,要求LED驱动方案提供恒定的光输出,不同通道间的电流匹配精度要高,要提供易用的接口来控制不同LED通道,并且要具备可靠的保护功能。安森美半导体针对这类应用的方案包括CAT4008和CAT4106等恒流LED汲入型驱动器,其中前者支持8通道,后者支持16通道。

  以CAT4008为例,典型LED通道匹配精度达±1.5%,且LED通道能够在输出电压低至0.4V(当LED电流为2~100 mA时)时保持稳流状态,在应用设计中可以此实现更高的电源效率。图1左侧显示的是CAT4008的框图,不同引脚的详细功能说明参见参考资料[1]。这器件使用8路紧密匹配的汲电流来对每个通道的LED电流进行稳流,而外部电阻RSET用于将LED通道电流设定为RSET电流的约51倍。由于每个通道包含独立电流感测电路,故CAT4008能够为所有通道都提供紧密的稳流。在大多数电流和电源电压条件下LED通道的最大压降为0.4 V,帮助改善散热及提升LED驱动器能效。上电时,欠压锁定电路清除所有闩锁及移位寄存器信息,并将所有输出设置为关闭。一旦达到欠压锁定阈值,就可以设定器件。驱动器将每个连续LED输出通道的激活时间各延迟17纳秒(典型值),即LED2相对LED1延迟17纳秒,LED3相对LED1延迟34纳秒,并依次类推。延迟在闩锁(LATCH)引脚激活时引入,从而将LED电源上的浪涌电流降至最低,从而能够使用更小的旁路电容。

  速度高达25MHz的高速、四线(4-Wire)串行接口通过移位寄存器和锁存架构控制8通道中的每一个LED通道。串行数据输出引脚允许多个器件通过同一个串行接口串联使用。CAT4008还有输出关闭引脚,该引脚可被用来关闭所有LED通道,而不必依赖串口发送数据。此外,CAT4008还具备热保护功能,在芯片温度超过许可限度时关闭LED输出。

  

安森美半导体8通道恒流LED汲入型驱动器CAT4008框图及应用示例 www.elecfans.com

 

  图1:安森美半导体8通道恒流LED汲入型驱动器CAT4008框图及应用示例。

  高亮度、高视觉冲击力建筑物照明应用的RGB LED像素驱动器

  某些旨在营造高视觉冲击力效果的建筑物装饰照明应用使用高亮度的LED,要求LED驱动器能够驱动高亮度的RGB LED,并且要具备高速接口,从而支持高数据率并确保维持高数据完整性,还需要具备超低的压降,从而提供更高的能效。

  安森美半导体适合这类应用的LED驱动器包括的带独立电流控制功能的三通道恒流RGB LED像素驱动器CAT4103和CAT4109。其中,CAT4103为高端、多色彩、“智能”LED建筑物照明应用而设计,具有高速串行接口,能支持达25 MHz的数据率,提供完全缓冲的数据输出,确保在分布式(长距离)、菊花链型照明系统中维持最高的数据完整性。而CAT4109使用并行接口,每条通道具有专门的脉宽调制(PWM)控制,非常适合更常规的LED视觉效果应用,如混色和建筑物重点照明。

  

安森美半导体CAT4103框图、典型应用电路图及应用示例 www.elecfans.com

 

  图2:安森美半导体CAT4103框图、典型应用电路图及应用示例。

  CAT4103和CAT4109都支持每通道达175 mA的宽广范围LED恒流驱动,电流为60 mA时压降电平至0.3 V ,确保在驱动长串LED时提供最高性能。这些驱动器每通道支持25 V的电压电平,能够以超过10瓦(W)的高亮度功率电平支持RGB像素。

  CAT4103和CAT4109是安森美半导体恒流低压降驱动器(LDO?)产品线的两款产品,这产品线还包括CAT4101和CAT4104等,其中,CAT4101提供高精度的1 A电流驱动能力,而CAT4104是一款四通道的恒流LED驱动器,适合通用及建筑物照明、汽车照明、LCD背光等应用。

  I2C指示器驱动器及端口扩展器

  市场上可以看到诸如由闪烁LED组成的广告销售标牌和具备开/关LED指示器的各种消费或工业用设备,这些应用需要能够控制各个LED单独导通/关闭或以某种频率来闪烁的驱动方案,安森美半导体的16通道I2C LED指示器及端口扩展器CAT9532和CAT9552就是适合这类应用的两款产品。

  CAT9532和CAT9552提供16位并行输入/输出(I/O)端口扩展器,优化用于LED调光控制,输出能够直接驱动并联的16颗LED(每通道电流25 mA),每个LED都可以单独导通、关闭,或以两种可编程速率中的一种来闪烁。两款器件的I/O均可用作通用I/O(GPIO),未被用于控制LED的端口能够当成普通端口来使用(参见图3)。

  

CAT9552典型应用电路图 www.elecfans.com

 

  图3:CAT9552典型应用电路图。

  这两款器件适合于需要限制总线流量或清空总线主控定时器的I2C和SMBus应用。两款器件都包含内部振荡器和驱动LED输出的两个脉宽调制(PWM)信号,用户可以设定每个独立PWM信号的周期和占空比。CAT9532的可选可编程闪烁频率范围为0.593 Hz至152 Hz,CAT9552为0.172 Hz至44 Hz,两款器件的占空比为0%至99.6%,适合的具体应用包括背光、RGB混色、传感器控制、电源开关/按钮、报警系统、办公设备、家电控制面板和销售点(POS)显示屏等。

  总结:

  本文分析了常见的LED控制应用及其对驱动/控制方案的基本要求,介绍了安森美半导体用于这些应用的主要产品及其特点。而安森美半导体身为应用于高能效电子产品的首要高性能硅方案供应商,提供涵盖1 至数百瓦功率范围的LED照明驱动及PFC解决方案,适合包括本文所述LED控制应用在内的宽广应用范围,而无论LED照明应用采用的是AC-DC电源、DC-DC电源或是电池供电,并满足客户对低成本、高性价比、高能效的要求。

关键字:LED控制应用  驱动  控制方案 编辑:探路者 引用地址:LED控制应用及其对驱动/控制方案要求

上一篇:LED汉字无线信息显示板的设计
下一篇:OLED技术的工作原理和分类及发光过程分析

推荐阅读最新更新时间:2023-10-18 15:41

交流电驱动LED发光技术趋成熟
新一代LED驱动IC的设计,必须打破传统的DC/DC拓扑结构设计理念。如采用恒功率,不采用磁滞控制的降压型而采用定频定电流控制,解决使用卤素灯电子变压器所产生的灯源闪烁和多灯并联不亮等等问题。 LED作为绿色、节能、省电、长寿命的第四代照明灯具异军突起、广受关注,正在如火如荼地发展。由于LED光源是低电压(VF=2-3.6V)、大电流(IF=200mA-1500mA)工作的半导体器件,因此必须提供合适的直流电流才能正常发光。直流(DC)驱动DCLED光源发光的技术已经越来越成熟。 照明驱动IC电压范围更广 由于我们日常照明使用的电源是高压交流电(AC100V-220V),所以必须使用降压的技术来获得较低的电压,常用采用变压器或开关
[电源管理]
交流电<font color='red'>驱动</font><font color='red'>LED</font>发光技术趋成熟
手机TFT显示驱动的解决方法和应用方法
当今的手机功能越来越趋于多样化,已经不再仅仅是一种简单的通信工具。人们在消费电子市场上选购手机时很容易就能找到一款带有QVGA TFT-LCD显示屏和200万象素数码相机的智能手机。一部手机可能又同时是 MP3、 DSC、 PDA和 PMP,甚至是便携式电视。要支持这么多功能,手机显示屏的作用不容小视。 要开发用于手机的增强型显示屏,需要解决两个主要问题。首先要提高显示单元的响应速度和显示效果从而支持视频业务。这也是大多数手机显示屏选用TFT-LCD的原因,就是利用其更快的响应速度和更好的显示质量。其次,显示单元和手机系统电路之间的通信连接也很关键,关系到整个显示系统的总体效率和质量。 为了满足这些需求,市场上出现了一系
[电源管理]
AnalogicTech针对手持设备推出小型无声的串联式升压型LED的背光驱动
  专注于为消费类、工业类和通信市场提供电源创新解决方案的模拟半导体公司Advanced Analogic Technologies, Inc. (AnalogicTech) (Nasdaq: AATI) 今天推出了31mA 单通道发光二极管(LED) 升压驱动器AAT14XX 系列,它能驱动一串多达10个发光二极管。该驱动器的小巧外形和无声操作使其成为了单节锂离子电池设备的理想LED 背光解决方案,这些设备包括屏幕更大的手机和智能手机、MP3播放器、便携式媒体播放器(PMP) 和便携式导航设备类应用。   AnalogicTech 战略营销总监Roger Smullen 表示:“最佳背光电源管理需求和特征随着LED 市场的发
[电源管理]
LED驱动设计5大技巧要领
1、芯片发热   这主要针对内置电源调制器的高压驱动芯片。假如芯片消耗的电流为2mA,300V的电压加在芯片上面,芯片的功耗为0.6W,当然会引起芯片的发热。驱动芯片的最大电流来自于驱动功率mos管的消耗,简单的计算公式为I=cvf(考虑充电的电阻效益,实际I=2cvf,其中c为功率MOS管的cgs电容,v为功率管导通时的gate电压,所以为了降低芯片的功耗,必须想办法降低c、v和f.如果c、v和f不能改变,那么请想办法将芯片的功耗分到芯片外的器件,注意不要引入额外的功耗。再简单一点,就是考虑更好的散热吧。   2、功率管发热   关于这个问题,也见到过有人在电源网论坛发过贴。功率管的功耗分成两部分,开关损耗
[电源管理]
STM32F4外设驱动系列之GPIO
GPIO常用相关寄存器 MODER:GPIO端口模式控制寄存器(GPIOx_MODER)(x = A..I) OTYPER:GPIO端口输出类型寄存器(GPIOx_OTYPER)(x = A..I) OSPEEDR:GPIO端口输出速度寄存器(GPIOx_OSPEEDR)(x = A..I) PUPDR:GPIO端口上拉/下拉寄存器(GPIOx_PUPDR)(x = A..I) IDR:GPIO端口输入数据寄存器(GPIOx_IDR)(x = A..I) ODR:GPIO端口输出数据寄存器(GPIOx_ODR)(x = A..I) AFRH/AFRL:GPIO复用功能高/低位寄存器(GPIOx_AFRH/GPIOx_AFRL)(x
[单片机]
自制单片机之五(2)……LCD1602的驱动
具体电路的制作是很简单的,就接了两个电阻,一个是10欧姆的背光限流电阻,另一个是2K的LCD极板电压调节电阻。这两个电阻的阻值怎么定呢?背光比较简单,它就相当于在后面接了几个发光二极管,任何时候你只要在15、16脚串上个100欧的电位器接上电源,调节电位器,觉得亮度合适。此时的阻值便可。LCD液晶极板驱动电压调节电阻的确定就稍微麻烦一点。在各数据线,控制线接好关通上电源的前提下在第3脚(VEE)和地之间接一个10K的电位器。调节电位器。当3脚电压高时为全亮,电压为0时为全暗(液晶全显示为黑块)。你用电位器把屏幕从全暗刚好调到变亮。这时便可调试程序。待屏幕能正确显示后再细调电位器,使对比度合适。这时的阻值便可确定,然后换成等值的固定电
[单片机]
自制单片机之五(2)……LCD1602的<font color='red'>驱动</font>
技术控:LED基本驱动照明电路设计解析
  LED 因其应用广泛,价格公道,而被业界广泛采用,不管是节日的装饰灯还是家庭使用的各种灯具要用到LED的驱动电路,因为它降低的能源的消耗,可长期稳定的工作,今天我就从一个实用的LED电路给大家延伸性的介绍 LED照明 驱动电路。   发光二极管(LED)因其具有高效、节能、寿命长、环保等特点,已成为现今 照明 技术的可选方案,并逐渐被应用于照明。促使人们关注LED照明技术的一个关键因素是,其大大降低了能源的消耗,并可实现长期可靠的工作。    本文先从采用恒流源的电路开始, 本电路中的主要元件三极管,要求其耐压要400V以上,功率也要10W以上的大功率管,如MJE13003、MJE13005等,并且要加上散热片,滤波电容C
[电源管理]
技术控:<font color='red'>LED</font>基本<font color='red'>驱动</font>照明电路设计解析
立迪思推出六电路LED驱动器LDS8860
  立迪思科技有限公司(Leadis Technology, Inc.)宣布已可供应LDS8860的产品样本。LDS8860是六电路LED驱动器的新系列,通过采用该公司专利的PowerLite电流调节器,这以充电泵为基础的产品能达致91%的效能,以及延长电池续航时间。   最新的LED驱动器针对便携产品的背光灯应用,支持多至6个LED,并且每条电路最高供电量达32毫安。新推出采用业内标准I2C接口系列的产品会加入较早前宣布推出的6电路PWM及一线编程接口产品,为手机设计工程师提供更具弹性的新性能/接口选择。   立迪思LED驱动器高级总监Adolfo Garcia表示:“各地的手机设计师均倾向将能够支持丰富内容的多媒体
[焦点新闻]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved