一种彩色LED显示屏16位恒流驱动芯片设计

最新更新时间:2011-09-15来源: 21ic关键字:LED  显示屏  恒流  驱动芯片 手机看文章 扫描二维码
随时随地手机看文章

  目前,大型彩色 LED 显示屏已成为高清晰大屏幕平板显示器件的主流产品。这是一种由发光二极管及其显示驱动集成电路芯片组成的显示单元拼接而成的大尺寸平板显示器件,显示单元中的集成电路驱动芯片主要用于接收后端控制系统的数字信号,驱动前端屏体发光二极管导通,实现信息显示。因此,驱动芯片的性能对LED显示屏的显示质量起着关键作用。近年来,随着LED显示屏显示技术的快速发展,专用型芯片已成为大型彩色LED显示屏的主流驱动芯片,但仍存在一些关键问题亟需解决,其中最为核心的是多位恒流驱动显示技术。精确的多位恒流驱动决定了大型彩色LED显示屏显示的均匀性、一致性和商用价值。

  本文基于CSMC 0.5 μm 5 V CMOS工艺,采用高精度基准电压抗失调和驱动电流输出匹配等技术,设计了一种适用于户外工作环境的彩色LED显示屏16位恒流驱动专用芯片,经仿真测试和流片验证,证明所研制芯片达到应用指标要求。

  1 芯片系统设计

  芯片的系统结构如图1所示。电路系统主要包括带隙基准、恒流基准、高精度电流放大器和逻辑控制等模块。其中,带隙基准模块产生高精度低失调基准电压,恒流基准模块利用基准电压和外挂电阻产生恒定基准电流,每个通道的高精度电流放大器完成对基准电流的放大,逻辑控制模块完成串并转换以及对每个通道的使能控制功能。

芯片内部结构框图

图1 芯片内部结构框图

  2 电路设计与仿真

  2.1 带隙基准模块

  在带隙基准模块中,由于实际情况下运算放大器不完全对称,因此存在失调电压和低频噪声;同时,晶体管失配引起的随机误差对基准源的精度影响也较大。因此,针对带隙基准模块的温度稳定性、抗噪性能和精度,本文设计了如图2所示的带隙基准模块结构,由启动与偏置电路、带隙基准电压源主体电路、振荡器、RC低通滤波器和电流镜等电路组成。启动电路在模块刚上电时,帮助电路离开零点;偏置电路主要为振荡器和运算放大器提供适当的稳定偏置。这里,采用与电源无关的偏置技术设计启动和偏置电路,以提高电源抑制比及电压调整率,改善带隙基准模块的精度。带隙基准电压源主体电路由运算放大器、斩波调制电路和解调电路组成,需要指出,本文通过采用斩波调制技术,消除了运放的输入失调电压,并有效地抑制了器件噪声。振荡器产生互补方波信号,用于斩波调制与解调电路中MOS开关管的通断控制,这里采用由反相器构成的环形振荡器,并通过反相器对方波进行整形,保证了信号的输出质量,同时减少了芯片面积。运算放大器输出端连接RC低通滤波器,以进一步消除噪声影响。电流镜为其他电路模块提供偏置电流,采用由带隙基准电压源输出电压直接偏置MOS管电流源方法,提高了温度稳定性,并减小了传输偏置电压的走线受干扰程度。

带隙基准模块的电路结构图

图2 带隙基准模块的电路结构图

  采用Hspice仿真器对上述设计的带隙基准模块从-40 ℃~80 ℃进行温度扫描。结果表明,当电源电压VDD=5.0 V,在5种不同工艺角变化时,基准电压随温度变化的最大偏移为2.2 mV,温度系数达到14.7 PPM/℃。

  2.2 恒流基准模块

  本设计中恒流基准模块采用外挂精确电阻和运算放大器负反馈方式,为高精度电流放大器提供恒定电流基准。考虑到高精度电流放大器工作在开关状态,因此在设计中添加了改进型电流镜、箝位电流镜和跟随器,如图3所示。其中,运算放大器采用两级结构并经过密勒补偿,以保证系统的稳定性,同时通过插入电阻方法消除零点造成的影响;改进型电流镜用于减少沟道长度调制效应引起的失配,并提高输出阻抗和输出驱动电流的匹配精度;箝位电流镜可提高电流镜速度,支持25 MHz的数据移位频率和高速电流响应;跟随器则隔离了高精度电流放大器对恒流基准模块的干扰。

恒流基准模块的电路结构图

图3 恒流基准模块的电路结构图

  仿真结果表明,在VDD=5.0 V和各种工艺角下,-40 ℃~80 ℃时恒流基准模块产生的基准电流与外挂电阻REXT成反比,大小为1.25 V/REXT,偏差在0.1%范围之内。

  2.3 高精度电流放大器

  高精度电流放大器和LED直接连接,并通过逻辑控制模块控制其输出驱动电流的开关。当逻辑控制模块输入从有效变为无效时,采用上拉网络和下拉网络对运放和输出进行关断,达到快速关闭LED的目的,电路结构如图4所示。此外,考虑到高压管电容的影响,采用了放电电路以消除输出驱动电流中的杂波。

高精度电流放大器

图4 高精度电流放大器

  图4中运放电路的AC特性采用Hspice仿真器进行扫描,结果表明,OP的开环增益为99 dB~103 dB,单位增益带宽为1.7 MHz~2 MHz,相位裕度为62 °~70 °。

  2.4 逻辑控制模块

  逻辑控制模块用于对外部显示数据的接收、锁存、串并转换以及使能控制,并结合脉冲宽度调制,输出16位LED逻辑控制信号,实现对LED显示屏的开关控制和灰度控制。在本文的逻辑控制模块中,专门设计了SDO脚和OE脚,使外部显示数据可通过SDO脚串行输入,以支持高至25 MHz的数据移位时钟频率,在彩色LED显示屏上实现图像的快速刷新;采用脉冲宽度调制方式对使能OE脚进行控制,达到动态控制彩色LED显示屏的灰度和亮度;在每个输入脚加入施密特触发器进行整形,以消除由于存在对地电容和较长传输线而对波形上升沿和下降沿产生的影响。

  采用Maxplus对上述设计的逻辑控制模块进行逻辑功能仿真验证。结果表明,逻辑控制模块完成了对外部数据的串并转换,并对输出数据进行了锁存和使能控制。

  3 版图设计与流片测试

  随机失配和系统失配将造成芯片性能的下降,因此本文在版图设计时,采用了叉指结构的MOS管,并在两侧加入冗余dummy,以降低上述两种失配。同时,注意匹配的MOS管与其他晶体管之间的间距,以免引起背栅掺杂浓度变化而导致阈值电压和跨导改变。

  此外,考虑到当输出电路驱动两个及两个以上的串联LED时,输出的NMOS管耐压将超过10 V。因此,本文在CMOS标准工艺基础上,通过调整个别工艺,例如采用低掺杂浓度的N阱,并利用N阱作为漂移区以提高耐压;同时对NMOS高压管采用Metal 2覆盖,并作为漏极的引出端,从而节省了版图面积并降低了连线电阻。

  基于以上的电路设计和仿真验证结果,在CSMC 0.5 μm N阱CMOS标准工艺的规则下完成物理设计和版图验证,得到面积为1 630 μm×1 230 μm的芯片版图。

  上述流片后的样品经工业和信息化部电子第五研究所中国赛宝实验室测试,在电压变化范围为4.5 V~7 V,温度变化范围为-40 ℃~80 ℃,送检样片工作正常;当数据移位时钟工作频率为25 MHz时,本文研制样片的主要技术参数的检测结果在表1中列出,并与业界广泛应用的台湾聚积LED显示屏16位恒流驱动芯片MBI5026进行了比较。

表1 LED显示屏16位恒流驱动芯片的主要技术指标

LED显示屏16位恒流驱动芯片的主要技术指标

  本文所研制的芯片具有功耗低、电压电流纹波系数小等优点,可应用于户外大型彩色LED显示屏。

关键字:LED  显示屏  恒流  驱动芯片 编辑:探路者 引用地址:一种彩色LED显示屏16位恒流驱动芯片设计

上一篇:LED显示屏驱动芯片的应用
下一篇:新型多功能控制LED台灯

推荐阅读最新更新时间:2023-10-18 15:44

led电视的优点和缺点及如何选购?
  led电视的优点和缺点   优点:   1、强悍的色域表现   传统CCDL背光液晶电视在色彩方面的表现一直是为人们所诟病的地方,但在led电视出现后这种问题有望得到根本性的解决。与冷凝式背光灯的恒定照明不同,led背光是可以按照区域甚至点来调节照明亮度的,所以在对比度和色域方面都有很大的提升。   目前最强悍的led电视可以达到105%NTSE色域,这与在色彩方面表现堪称完美的CRT、等离子不相上下,国外品牌的某些测试产品已经可以达到150%的色域。不过不是所有的led电视都拥有100%以上的NTSC色域,因为led分为RGB-led和白光led两种,RGB-led顾名思义是由红绿蓝三色二极管组成,对色域的提升有着巨大的
[嵌入式]
基于51单片机设计的公交车LED
一、项目介绍 为了提高公交车站点信息的实时性和准确性,方便乘客及时了解公交车到站信息,从而提高公交出行的便利性和舒适度。传统的公交车到站信息是通过人工喊话或者静态的站牌来实现的,这种方式存在信息不及时、不准确、不方便等问题。当前设计基于STC89C52单片机和MAX7219点阵LED驱动模块的公交车LED屏,通过SYN6288进行语音播报到站信息,可以更加准确地展示到站信息,提高公交出行的效率和便利性。 通过STC89C52单片机控制MAX7219点阵LED驱动模块,将需要显示的信息转化成点阵图像,然后通过MAX7219点阵LED驱动模块控制2*8的LED显示屏显示出来。同时,通过SYN6288语音模块,将到站信息转化成语音播
[单片机]
基于51单片机设计的公交车<font color='red'>LED</font>屏
如何用PTC热敏电阻实现LED照明设备过热保护?
随着 LED 照明设备(发光二极管)的性能不断提高,价格日渐低廉,其市场也迅速扩大。LED照明设备已实现了低价化,然而,与传统的白炽灯,荧光灯相比,作为照明设备的实绩仍然欠佳,人们指出其安全性的课题。虽然 LED 具有高效照明,低耗电的特点,但是作为高亮度的LED元件本身却处于异常的高温状态。 本文将介绍使用村田制作所的陶瓷 PTC 热敏电阻“POSISTOR”来简单实现LED照明设备过热保护的方法,能够达到低成本,提高LED照明设备的安全性。 演示板说明 图1所示为村田制作所展示的发光二极管(LED)演示板的外观照片。 图1:村田制作所展出的发光二极管(LED)演示板 在该LED演示板上装载5个表面贴装型 LED ,
[电源管理]
如何用PTC热敏电阻实现<font color='red'>LED</font>照明设备过热保护?
液晶显示之殇—光源篇
在这里笔者先扫个盲,现在我们去商场买电视机,很多导购员会拉着你买LED电视,会跟你强调它的一大堆优点,末了还会指着角落里积着一些灰尘的一台电视机说,“性能比那样的LCD电视强多了”,其实她所说的“LED电视”、“LCD电视”都是指液晶电视,也就是LCD电视,区别就在于其背光源不同(背光源是什么,就是为液晶提供光源的部件),一种是LED背光,一种是CCFL背光。   CCFL 全称是Cold Cathode Fluorescent Lamp,翻译过来我们就叫它冷阴极灯管。它是LED作为发光源之前液晶显示最重要也是用的最久的一种光源。外观来看它是一根通体细长的灯管,两端有引线,可以是直形,也可以拉伸成U形、L形等多种形状。
[电源管理]
液晶显示之殇—光源篇
只有苹果办得到 让台积电、联电投入研发Micro LED
台积电董事长张忠谋派出位于七厂的先进封装单位,越级挑战,拿最顶级的半导体设备和人才,跟LED厂合作,做原本被认为精密度较低的LED上游电路测试,测试每一颗微米大小的晶粒是否能正常运作。如果不是苹果的影响力,谁有能力让台积电卖掉LED部门后,重新做起这个生意? 龙潭厂更聚集了台湾顶尖的供应链厂商,“他们经常把人叫进去开会、讨论,面板、半导体、机构都有,”一位显示器厂总经理说,“全台湾都已经问过一轮了。” “他们测试各种想法,就像放火烧遍整座森林,直到确定没问题为止。”一位产业人士观察,“只要苹果登高一呼,原本不存在的供应链就会自动成形。” 采访中,多位消息来源透露,台积电现在正用先进封装技术,和苹果合作研究微发光二极体技术。台
[手机便携]
如何选取合理的LED驱动方式
线性稳压器来转换电压会面临功耗问题,开关方式则有噪声的问题,LED驱动选择何种转换方式取决于何种应用。 何种转换方式 通过线性稳压器来转换电压会面临功耗问题,这种方式比较适合用于需要回避噪声(比如汽车音响)因而不能采用开关方式的转换电路中。而开关方式的特点是转换效率非常高,但它也有噪声的问题,所以选择何种转换方式取决于何种应用。 通常,电荷泵驱动方式的效率会随着输入电压的变化而变化,在电压变化范围大的应用中,其效率比较低;而在电压变化范围比较小的应用中,只有当输入和输出电压之间是整倍数关系时,它的效率才能达到最大,但这在电池供电的实际应用中很难达到。反观电感的转换效率不太受电压干扰,应用限制也比电荷泵要少,所以目
[电源管理]
德加科学家研发成功硅基LED 彩色又高效
  近日,来自德国卡尔斯鲁厄理工学院(德语:Karlsruher Institut für Technologie,KIT)和加拿大多伦多大学(University of Toronto)的科研人员借助硅纳米晶体,成功制造出了高效的硅基发光二极管(Si LED s),该二极管不含重金属,却能够发射出多种颜色的光。   硅(Si)虽然在微电子和光伏产业占据着主导地位,但长期以来其却一直被认为不适合发光二极管的制造。然而,这在纳米尺度却并非正确,由成百上千的原子构成的微小硅纳米晶体能够产生光线,也具备成为高效光发射器的巨大潜力。迄今为止,硅基发光二极管的制造一直局限于红色的可见光谱范围和近红外线,因此制造可发出彩色光的二极管可
[电源管理]
基于ST L99LD21 的汽车LED前大灯方案
汽车前大灯不仅能完成照明的功能,还能根据路况及时地调节照明亮度与区域,既为驾驶员提供良好的视觉范围,也能做到不影响前方车辆和对向来车,提高驾驶的安全性。相比传统的卤素大灯, LED 大灯具有光效高,寿命长,响应速度快,体积小等优势。体积小使得 LED 大灯内可以集成数量较多的 LED 灯珠,做到造型多变,照明区域可细分,甚至像素级可调。LED价格日益亲民化,使其在汽车上的应用逐渐普及。 ST 的前大灯演示板使用两颗大功率LED驱动芯片 L99LD21 ,用来驱动车大灯内部的矩阵式远光灯,近光灯以及一串辅助转向的角灯;一颗 ST 车规级32位PowerPC架构微处理器SPC560D30L1作控制;一颗高边驱动VN7140AS
[汽车电子]
基于ST L99LD21 的汽车<font color='red'>LED</font>前大灯方案
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved