LED散热基板汇总介绍及技术发展趋势分析

最新更新时间:2011-09-27来源: chinaaet关键字:LED散热  散热基板  晶粒基板  陶瓷散热基板 手机看文章 扫描二维码
随时随地手机看文章

  随着全球环保的意识抬头,节能省电已成为当今的趋势。LED产业是近年来最受瞩 目的产业之一。发展至今,LED产品已具有节能、省电、高效率、反应时间快、寿命周期长 、且不含汞,具有环保效益;等优点。然而通常LED高功率产品输入功率约为20%能转换成 光,剩下80%的电能均转换为热能。

  一般而言,LED发光时所产生的热能若无法导出,将会使LED结面温度过高,进而影 响产品生命周期、发光效率、稳定性,而LED结面温度、发光效率及寿命之间的关系,以下 将利用关系图作进一步说明。
  
  1、LED散热途径

  依据不同的封装技术,其散热方法亦有所不同,而LED各种散热途径方法约略可以 下示意之:

  散热途径说明:

  (1). 从空气中散热

  (2). 热能直接由System circuit board导出

  (3). 经由金线将热能导出

  (4). 若为共晶及Flip chip制程,热能将经由通孔至系统电路板而导出

  一般而言,LED晶粒(Die)以打金线、共晶或覆晶方式连结于其基板上 (Substrate of LEDDie)而形成一LED晶片( chip),而后再将LED 晶片固定于系统的电 路板上(System circuitboard)。因此,LED可能的散热途径为直接从空气中散热,或经 由LED晶粒基板至系统电路板再到大气环境。而散热由系统电路板至大气环境的速率取决于 整个发光灯具或系统之设计。

  然而,现阶段的整个系统之散热瓶颈,多数发生在将热量从LED晶粒传导至其基板 再到系统电路板为主。此部分的可能散热途径:其一为直接藉由晶粒基板散热至系统电路 板,在此散热途径里,其LED晶粒基板材料的热散能力即为相当重要的参数。另一方面, LED所产生的热亦会经由电极金属导线而至系统电路板,一般而言,利用金线方式做电极接 合下,散热受金属线本身较细长之几何形状而受限;因此,近来即有共晶(Eutectic) 或 覆晶(Flipchip)接合方式,此设计大幅减少导线长度,并大幅增加导线截面积,如此一 来,藉由LED电极导线至系统电路板之散热效率将有效提升。

  经由以上散热途径解释,可得知散热基板材料的选择与其LED晶粒的封装方式于LED 热散管理上占了极重要的一环,后段将针对LED散热基板做概略说明。

  2、LED散热基板

  LED散热基板主要是利用其散热基板材料本身具有较佳的热传导性,将热源从LED晶 粒导出。因此,我们从LED散热途径叙述中,可将LED散热基板细分两大类别,分别为LED晶 粒基板与系统电路板,此两种不同的散热基板分别乘载着LED晶粒与LED晶片将LED晶粒发光 时所产生的热能,经由LED晶粒散热基板至系统电路板,而后由大气环境吸收,以达到热散 之效果。

  随着全球环保的意识抬头,节能省电已成为当今的趋势。LED产业是近年来最受瞩 目的产业之一。发展至今,LED产品已具有节能、省电、高效率、反应时间快、寿命周期长 、且不含汞,具有环保效益;等优点。然而通常LED高功率产品输入功率约为20%能转换成 光,剩下80%的电能均转换为热能。

  一般而言,LED发光时所产生的热能若无法导出,将会使LED结面温度过高,进而影 响产品生命周期、发光效率、稳定性,而LED结面温度、发光效率及寿命之间的关系,以下 将利用关系图作进一步说明。
  
  1、LED散热途径

  依据不同的封装技术,其散热方法亦有所不同,而LED各种散热途径方法约略可以 下示意之:

  散热途径说明:

  (1). 从空气中散热

  (2). 热能直接由System circuit board导出

  (3). 经由金线将热能导出

  (4). 若为共晶及Flip chip制程,热能将经由通孔至系统电路板而导出

  一般而言,LED晶粒(Die)以打金线、共晶或覆晶方式连结于其基板上 (Substrate of LEDDie)而形成一LED晶片( chip),而后再将LED 晶片固定于系统的电 路板上(System circuitboard)。因此,LED可能的散热途径为直接从空气中散热,或经 由LED晶粒基板至系统电路板再到大气环境。而散热由系统电路板至大气环境的速率取决于 整个发光灯具或系统之设计。

  然而,现阶段的整个系统之散热瓶颈,多数发生在将热量从LED晶粒传导至其基板 再到系统电路板为主。此部分的可能散热途径:其一为直接藉由晶粒基板散热至系统电路 板,在此散热途径里,其LED晶粒基板材料的热散能力即为相当重要的参数。另一方面, LED所产生的热亦会经由电极金属导线而至系统电路板,一般而言,利用金线方式做电极接 合下,散热受金属线本身较细长之几何形状而受限;因此,近来即有共晶(Eutectic) 或 覆晶(Flipchip)接合方式,此设计大幅减少导线长度,并大幅增加导线截面积,如此一 来,藉由LED电极导线至系统电路板之散热效率将有效提升。

  经由以上散热途径解释,可得知散热基板材料的选择与其LED晶粒的封装方式于LED 热散管理上占了极重要的一环,后段将针对LED散热基板做概略说明。

  2、LED散热基板

  LED散热基板主要是利用其散热基板材料本身具有较佳的热传导性,将热源从LED晶 粒导出。因此,我们从LED散热途径叙述中,可将LED散热基板细分两大类别,分别为LED晶 粒基板与系统电路板,此两种不同的散热基板分别乘载着LED晶粒与LED晶片将LED晶粒发光 时所产生的热能,经由LED晶粒散热基板至系统电路板,而后由大气环境吸收,以达到热散 之效果。

  2.1 系统电路板

  系统电路板主要是作为LED散热系统中,最后将热能导至散热鳍片、外壳或大气中 的材料。近年来印刷电路板(PCB)的生产技术已非常纯熟,早期LED产品的系统电路板多 以PCB为主,但随着高功率LED的需求增加,PCB之材料散热能力有限,使其无法应用于其高 功率产品,为了改善高功率LED散热问题,近期已发展出高热导系数铝基板(MCPCB),利 用金属材料散热特性较佳的特色,已达到高功率产品散热的目的。然而随着LED亮度与效能 要求的持续发展,尽管系统电路板能将LED晶片所产生的热有效的散热到大气环境,但是 LED晶粒所产生的热能却无法有效的从晶粒传导至系统电路板,异言之,当LED功率往更高 效提升时,整个LED的散热瓶颈将出现在LED晶粒散热基板。

  2.2 LED晶粒基板

  LED晶粒基板主要是作为LED 晶粒与系统电路板之间热能导出的媒介,藉由打线、 共晶或覆晶的制程与LED晶粒结合。而基于散热考量,目前市面上LED晶粒基板主要以陶瓷 基板为主,以线路备制方法不同约略可区分为:厚膜陶瓷基板、低温共烧多层陶瓷、以及 薄膜陶瓷基板三种,在传统高功率LED元件,多以厚膜或低温共烧陶瓷基板作为晶粒散热基 板,再以打金线方式将LED晶粒与陶瓷基板结合。

  如前言所述,此金线连结限制了热量沿电极接点散失之效能。因此,近年来,国内 外大厂无不朝向解决此问题而努力。其解决方式有二,其一为寻找高散热系数之基板材料 ,以取代氧化铝,包含了矽基板、碳化矽基板、阳极化铝基板或氮化铝基板,其中矽及碳 化矽基板之材料半导体特性,使其现阶段遇到较严苛的考验,而阳极化铝基板则因其阳极 化氧化层强度不足而容易因碎裂导致导通,使其在实际应用上受限,因而,现阶段较成熟 且普通接受度较高的即为以氮化铝作为散热基板;然而,目前受限于氮化铝基板不适用传 统厚膜制程(材料在银胶印刷后须经850℃大气热处理,使其出现材料信赖性问题),因此 ,氮化铝基板线路需以薄膜制程备制。

  以薄膜制程备制之氮化铝基板大幅加速了热量从LED晶粒经由基板材料至系统电路 板的效能,因此大幅降低热量由LED晶粒经由金属线至系统电路板的负担,进而达到高热散 的效果。

  另一种热散的解决方案为将LED晶粒与其基板以共晶或覆晶的方式连结,如此一来 ,大幅增加经由电极导线至系统电路板之散热效率。然而此制程对于基板的布线精确度与 基板线路表面平整度要求极高,这使得厚膜及低温共烧陶瓷基板的精准度受制程网版张网 问题及烧结收缩比例问题而不敷使用。现阶段多以导入薄膜陶瓷基板,以解决此问题。薄 膜陶瓷基板以黄光微影方式备制电路,辅以电镀或化学镀方式增加线路厚度,使得其产品 具有高线路精准度与高平整度的特性。共晶/覆晶制程辅以薄膜陶瓷散热基板势必将大幅提 升LED的发光功率与产品寿命。

  近年来,由于铝基板的开发,使得系统电路板的散热问题逐渐获得改善,甚而逐渐 往可挠曲之软式电路板开发。另一方面,LED晶粒基板亦逐步朝向降低其热阻方向努力。

  3、LED陶瓷散热基板介绍

  如何降低LED晶粒陶瓷散热基板的热阻为目前提升LED发光效率最主要的课题之一, 若依其线路制作方法可区分为厚膜陶瓷基板、低温共烧多层陶瓷、以及薄膜陶瓷基板三种 ,分别说明如下:

  3.1 厚膜陶瓷基板

  厚膜陶瓷基板乃采用网印技术生产,藉由刮刀将材料印制于基板上,经过干燥、烧 结、雷射等步骤而成,目前国内厚膜陶瓷基板主要制造商为禾伸堂、九豪等公司。一般而 言,网印方式制作的线路因为网版张网问题,容易产生线路粗糙、对位不精准的现象。因 此,对于未来尺寸要求越来越小,线路越来越精细的高功率LED产品,亦或是要求对位准确 的共晶或覆晶制程生产的LED产品而言,厚膜陶瓷基板的精确度已逐渐不敷使用。

  3.2 低温共烧多层陶瓷

  低温共烧多层陶瓷技术,以陶瓷作为基板材料,将线路利用网印方式印刷于基板上 ,再整合多层的陶瓷基板,最后透过低温烧结而成,而其国内主要制造商有璟德电子、鋐 鑫等公司。而低温共烧多层陶瓷基板之金属线路层亦是利用网印制程制成,同样有可能因 张网问题造成对位误差,此外,多层陶瓷叠压烧结后,还会考量其收缩比例的问题。因此 ,若将低温共烧多层陶瓷使用于要求线路对位精准的共晶/覆晶LED产品,将更显严苛。

  3.3 薄膜陶瓷基板

  为了改善厚膜制程张网问题,以及多层叠压烧结后收缩比例问题,近来发展出薄膜 陶瓷基板作为LED晶粒的散热基板。薄膜散热基板乃运用溅镀、电/电化学沉积、以及黄光 微影制程制作而成,具备:

  (1)低温制程(300℃以下),避免了高温材料破坏或尺寸变异的可能性;

  (2)使用黄光微影制程,让基板上的线路 更加精确;

  (3)金属线路不易脱落…等特点,因此薄膜陶瓷基板适用于高功率、小尺 寸、高亮度的LED,以及要求对位精确性高的共晶/覆晶封装制程。而目前国内主要以瑷司柏 电子与同欣电等公司,具备了专业薄膜陶瓷基板生产能力。

  4、国际大厂LED产品发展趋势

  目前LED产品发展的趋势,可从LED各封装大厂近期所发表的LED产品功率和尺寸观 察得知,高功率、小尺寸的产品为目前LED产业的发展重点,且均使用陶瓷散热基板作为其 LED晶粒散热的途径。因此,陶瓷散热基板在高功率,小尺寸的LED产品结构上,已成为相 当重要的一环,以下表二即为国内外主要之LED产品发展近况与产品类别作简单的汇整。

  5、结论

  要提升LED发光效率与使用寿命,解决LED产品散热问题即为现阶段最重要的课题之 一,LED产业的发展亦是以高功率、高亮度、小尺寸LED产品为其发展重点,因此,提供具 有其高散热性,精密尺寸的散热基板,也成为未来在LED散热基板发展的趋势。现阶段以氮 化铝基板取代氧化铝基板,或是以共晶或覆晶制程取代打金线的晶粒/基板结合方式来达到 提升LED发光效率为开发主流。在此发展趋势下,对散热基板本身的线路对位精确度要求极 为严苛,且需具有高散热性、小尺寸、金属线路附着性佳等特色,因此,利用黄光微影制 作薄膜陶瓷散热基板,将成为促进LED不断往高功率提升的重要触媒之一。

关键字:LED散热  散热基板  晶粒基板  陶瓷散热基板 编辑:探路者 引用地址:LED散热基板汇总介绍及技术发展趋势分析

上一篇:自动开花的太阳能LED灯
下一篇:LED路灯设计多方位探讨

推荐阅读最新更新时间:2023-10-18 15:49

LED散热基板介绍及技术发展趋势探析
随着全球环保的意识抬头,节能省电已成为当今的趋势。LED产业是近年来最受瞩目的产业之一。发展至今,LED产品已具有节能、省电、高效率、反应时间快、寿命周期长、且不含汞,具有环保效益;等优点。然而通常LED高功率产品输入功率约为20%能转换成光,剩下80%的电能均转换为热能。 一般而言,LED发光时所产生的热能若无法导出,将会使LED结面温度过高,进而影响产品生命周期、发光效率、稳定性,而LED结面温度、发光效率及寿命之间的关系,以下将利用关系图作进一步说明。 1、LED散热途径 依据不同的封装技术,其散热方法亦有所不同,而LED各种散热途径方法约略可以下示意之: 散热途径说明:
[电源管理]
LED散热设计中散热方式和材质的大揭秘
随着 LED 材料及封装技术的不断演进,促使 LED产品 亮度不断提高,LED的应用越来越广,以LED作为显示器的背光源,更是近来热门的话题,主要是不同种类的 LED背光源 技术分别在色彩、亮度、寿命、耗电度及环保诉求等均比传统冷阴极管(CCFL)更具优势,因而吸引业者积极投入。   最初的单芯片LED的功率不高,发热量有限,热的问题不大,因此其封装方式相对简单。但近年随着LED材料技术的不断突破,LED的封装技术也随之改变,从早期单芯片的炮弹型封装逐渐发展成扁平化、大面积式的多芯片封装模组;其工作电流由早期20mA左右的低功率LED,进展到目前的1/3至1A左右的高功率LED,单颗LED的输入功率高达1W以上,甚至到3W、5W封
[电源管理]
LED汽车前大灯散热与光衰研究
  众所周知,半导体材料在工作时受环境温度影响较大。大功率LED的光电转换效率更低,工作过程中只有10%~25%的电能转换成光能,其余的几乎都转换成热能。加之汽车前大灯安装在炙热的发动机舱内,高温水箱、引擎、排气系统所产生的热将LED前大灯置于严酷的环境中。传统车灯灯泡所产生的热远高于LED,但灯泡输出的亮度不会因为热而变化,其热设计的重点是壳体内的均温设计。而LED的光输出却会因为自身的热或来自发动机舱的高温而影响本身PN结温稳定,LED光通量ФV和波长等重要参数受到PN结温的直接影响,这种不良的温度循环将导致发光效率和寿命急剧下降。因此散热成为LED作为光源设计的重要课题。   1、汽车前大灯的散热技术   1.1 被
[嵌入式]
浅析白光LED温升的封装散热方法
  过去LED从业者为了获得充分的白光LED光束,曾经开发大尺寸LED芯片来达到预期目标。可实际上白光LED的施加电力持续超过1W以上时光束反而会下降,发光效率相对降低20~30%。换句话说,白光LED的亮度如果要比传统LED大数倍,消耗电力特性超越萤光灯的话,就必需克服下列四大课题:抑制温升、确保使用寿命、改善发光效率,以及发光特性均等化。温升问题的解决方法是降低封装的热阻抗;维持LED的使用寿命的方法是改善芯片外形、采用小型芯片;改善LED的发光效率的方法是改善芯片结构、采用小型芯片;至于发光特性均匀化的方法是改善LED的封装方法,这些方法已经陆续被开发中。   解决封装的散热问题才是根本方法   由于增加LED灯
[电源管理]
提高LED显示屏散热量的七点技巧
  在实际应用中,提高 LED显示屏 的散热量,不仅有效提高 LED 显示屏散热量的效率,也可以达到节约电量的作用,更有利于提高LED显示屏使用寿命的功效。   1、风扇散热,灯壳内部用长寿高效风扇加强散热,比较常用的方法这种方法造价低、效果好。   2、利用铝散热鳍片,这是最常见的散热方式,用铝散热鳍片做为外壳的一部分来增加散热面积。   3、空气流体力学,利用灯壳外形,制造出对流空气,这是最低成本的加强散热方法。   4、表面辐射散热处理,灯壳表面做辐射散热处理,较为简单的就是涂抹辐射散热漆,可以将热量用辐射方式带离灯壳表面。   5、导热散热一体化--高导热陶瓷的运用,灯壳散热的目的是降低led高清显示屏芯片的工作温度,由于
[电源管理]
大功率LED散热的改善方法分析
1 、引言 目前,随着 LED 向着大 功率 方向发展,很多功率型LED的 驱动 电流达到70 mA、100 mA甚至1 A,电流增大虽然能够提高LED的 亮度 、功率,但是这将会引起芯片内部热量聚集,导致发光波长漂移、出 光效 率下降、荧光粉加速老化以及使用寿命缩短等一系列问题。业内已经对 大功率LED 的散热问题作出了很多的努力:通过对芯片外延结构优化设计,使用表面粗化技术等提高芯片内外量子效率,减少无辐射复合产生的 晶格 振荡,从根本上减少散热组件负荷;通过优化封装结构、材料,选择以铝基为主的金属芯印刷电路板(MC PCB ),使用陶瓷、复合金属基板等方法,加快热量从外延层向散热基板散发。多数厂家还
[电源管理]
大功率<font color='red'>LED</font><font color='red'>散热</font>的改善方法分析
解析大功率白光LED散热与寿命问题
众多环保光源应用方案中,LED是相对其他光源方案更为节能、便于组装设计的一种光源技术,其中,在照明光源应用中,高功率白光LED使用则为最频繁的发光元器件,但白光LED虽在发光效率、单颗功率各方面表现均有研发进展,实际上白光LED仍存在发光均匀性、封装材料寿命等问题,尤其在芯片散热的应用限制,则为开发LED光源应用首要必须改善的问题... 高功率白光LED应用于日常照明用途,其实在环保光源日益受到重视后,已经成为开发环保光源的首要选择。但实际上白光LED仍有许多技术上的瓶颈尚待克服,目前已有相关改善方案,用以强化白光LED在发光均匀性、封装材料寿命、散热强化等各方面设计瓶颈,进行重点功能与效能之改善。 环保光源需求增加
[电源管理]
浅谈新式LED散热技术IVC一举突破传统LED散热技术限制
LED 产业随着厂商能力的不同,而有分成主打高技术水准、高毛利,以及一般技术水准、低毛利,还有两种方式兼顾等模式。而争议很大的 LED散热 技术,尽管很多做中低阶LED产品的厂商不在意,但相关技术的发展倒是日新月异,毫不停歇,以求打造出高毛利、高附加价值的应用来,但相关开发成本与难度,也是不少厂商为之却步,选择其它产品来做的原因之一。 而我们这次要介绍的是新式的LED散热技术IVC,也就是真空均温板架构。它的原理很简单,就是透过抽取空气的方式,建立一个内部中空的金属物,接着利用特殊介质和同质材料的饱和蒸气物质,填满金属物的中空部分。 这样的架构很类似水冷、液体冷却的循环管线系统,只要高 功率 LED发光时,发光二极管产生的热量,将
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved