高亮度LED的发展趋势

最新更新时间:2011-10-23来源: 中国LED照明网关键字:高亮度  LED  发展趋势 手机看文章 扫描二维码
随时随地手机看文章

随著LED性能持续地提高,应用市场也随之急速扩大,隐藏在背后的原因是使用GaN、AllnGaP发光材料的高辉度LED,拥有著长寿命、省电、耐震、低电压驱动等优秀的特色,并且超越灯泡和卤素等,而高发光效率的LED更是在最近几年陆续被研发出来,因此,未来高亮度LED市场的发展,将会更快速与广泛的成长。

  其中普及率最明显的就是白光LED, 90年代末期在环保节能的背景下更被市场所期望着,同时也刺激了业者迅速研发相关的技术。就目前而言,白光LED主要的应用包括了手机液晶背光照明和车用内装照明,单单是这些市场就已经占了LED整体销售量的25%左右.

  另一方面关于照明应用的部份,则处于刚起步的境界。一般建筑物的照明,往往占了整个消耗电力的20%,在日本,90年代已经超过每年1,000亿kWh。所以对于新一代节能型光源的期望相当大,但遗憾的是到目前为止,白光LED还只能够使用在相当小的范围。因为像5mm的小型白光LED,无法像电灯泡或者萤光灯那样,只用一个就能得到使用环境所需的光量。因此如果希望LED能够跨足到建筑照明,在整体技术上则需要更大的突破才行。

  高亮度白光LED基本结构

  白光LED基本上有两种方式。一种是多芯片型,一种是单芯片型。前者是将红绿蓝三种LED封装在一起,同时使其发光而产生白光,后者是把蓝光或者紫光、紫外光的LED作为光源,在配合使用萤光粉发出白光。前者的方式,必须将各种LED的特性组合起来,驱动电路比较复杂,后者单芯片型的话,LED只有1种,电路设计比较容易。单芯片型进一步分成两类,一类是发光源使用蓝光LED,另一类是使用近紫外和紫外光。现在,市场上的白光LED大多数是蓝光LED配合YAG萤光粉。

  在过去,只有蓝光LED使用GaN做为基板材料,但是现在从绿光领域到近紫外光领用的LED,也都开始使用GaN化合物做为材料了。并且伴随著白光LED应用的扩大,市场对其效能的期待也逐渐增加。从单纯的角度来看,高效率的追求一直都是被市场与业者所期待的。但是另一方面,演色也将会是一个重要的性能指标,如果只是做为显示用途的话,发光色为白色可能就已经足够了,但是从照明的用途来说,为了达到更高效率,如何实现与自然光接近的颜色就显得非常必要了。

   GaN作为高亮度LED基材 逐渐普及

  在技术发展的初期,全球只有23家业者发展及生产GaN LED,但是到今天为止生产业者的数量已经接近10家企业,因此在市场上也展开了激烈的竞争。与初期相比较之下,尽管今天已经实现了飞跃性的亮度提升,但是技术上即将面临更困难的门槛,所以现在不管是学术界,还是企业界都在集中精力进行技术和研究研发。以目前GaN LED整体的研发方向来看,大概分为,大电流化、短波长化,以及高效率化等等的发展方向.

  如何让LED支持更大的电流

  近年来,业者对于只需一颗就可达到相当亮度的LED研发相当积极,因此在这一方面的技术也就落在如何让LED能够支持更大的电流。通常30u㎡的LED最大可以驱动30mA的电流,但是这样的结果还是远远无法满足市场的期望,所以目标是需要将10倍以上的电流,导通到LED元件中。因此当LED的面积尺寸可以扩充到1m㎡时,那么紧接下来的工作便是如何让电流值能够达到350500mA,因为驱动电压是3V多,所以就可以有1W的电力能被流进1m㎡的芯片面积。

  而在发光演色的方面,虽然有这么大的功率输入到GaN LED中,但是所投入电力的四分之三都无法转换成光而形成热量,因此LED就会出现过热的现象,这也会直接影响到LED的演色结果。因为LED元件的基本特性是,如果温度上升,发光效率就会下降以及造成演色性偏差,所以如何有效的释放大量产生热量的放热技术成为了关键,因此将LED装在热传导率大、热容量大的材料上就成了相当重要的问题,以目前来说大多是使用有价金属或者陶瓷。

  短波长带来励起光的高能量化 提升萤光粉的发光效率

  从蓝光开始的GaN LED,目前已经成功研发了高辉度绿光LED,开始虽然也有长波长化的研发趋势,但是因为InN的混晶比提高而导致的结晶性恶化,现在已经逐渐被业界放弃了。另一方面,为了诸如成为雷射代用品等的新型应用研发也开始被考量,所以目前业界对于短波长的研发正在积极进行。最近日本一些大学的实验室已经成功地研发出250nm的LED,不过实用性还是有待思考,因为人眼对于波长的接受度约为380nm,所以波长如果比380nm更短时,是无法生产出可视域内的LED,或者会产生低输出的情况。

  为了避免遇到前述的问题,目前大多都采用以下的解决方法:

  1.变更发光层结构:不在可视域LED的芯片上采用的GaInN结构,而是采用Eg更大的AlGaN或者AlGaInN。

  2.回避光吸收损失:在LED的芯片结构中存在GaN或者GaInM层的话,会因为自身将光吸收而无法将光散发出去,所以利用AlGaN层为基础,来构成出全体结构层会有比较好的成果,或者利用GaN作为重要的n型底层。

  3.减少结晶缺陷的:短波长LED中结晶缺陷的密度会对光输出和寿命早成很大的影响。

如果能够将上述的三个课题顺利的解决,相信利用LED作为一般照明的实用距离又能大幅度的缩短。以目前来说,GaN白光LED的效率已经可以超过了白热电灯泡和卤素灯(1525lm/W),但是为了能够超过拥有压倒性光亮输出相大的日光灯(5080lm/W以上),就需要更大幅的效率提高和光量的飞跃性增加。为了能达到与日光灯相同的光源特性,利用萤光粉发光的混色形成的白光化技术,就成为关键的因素。如果充分利用LED的效率,并且能够实现短波长化的话,利用励起光的高能量化,相信萤光粉的发光效率也会大幅攀升。

  在长晶面得到均一的质量才是关键

  所谓的内部发光效率是指电子变换成内光的比例。可以说是LED中心部份的发光效率。但是往往因为结晶缺陷的因素,严重的影响了LED的发光效率。当GaN长晶时,因为使用在基板上的蓝宝石基板和GaN单结晶件的格子定数差、热膨胀系数的差距,使得长晶方向出现了非常高密度的迁移缺陷。

  一般来说所产生的密度是在109c㎡以上,这样的密度如果是出现在短波长LED和雷射二极管时就会成为致命伤。为了减少这种转位密度的方法大致上有2种,一种是不让转位贯通到长成方向、另一种是抑制转位现象的出现。在不让转位贯通到长成方向这一方面,可以使用Patterning加工的基板,在垂直长成时,使之往水平方向长成,将缺陷的长成边朝向水平方向弯曲,垂直方向实现贯通结果,来降低转位现象,这样的做法虽然大概能达到107c㎡以下的低转位,但是实际量产的话,要在长晶面得到均一的质量才是关键。后者的方法是将结晶缺陷密度低的Ⅲ族氮化物(nitride)基板,或者低缺陷的Ⅲ族氮化物使用在已经成膜的基板上。

  原来在Ⅲ族氮化物里是不存在单结晶Bulk,当使用蓝宝石基板进行hetero-epitaxial生成,转位高密度发生的根源就在于这种异种基板的使用,当然使用Bulk基板是最佳的解决方法。因此,在各种制作方法上的研发、量产化都在积极的开发中,也有一些已经开始进入销售的阶段了。另一方面,与终极基板Bulk基板相对的,能够实现其类似功能的是Template基板。目前好几个业者都开始小量生产,这些虽然没有像Bulk基板成本那么高,但是成本也不低,因为考虑到高成本和效率,只能使用在雷射和电子设备,UV LED等上面。

  尽管结晶缺陷非常多,但是GaN系LED元件为什么能够达到高亮度,并且芯片不会迅速劣化,这些结构现象还是仍旧被工程师与学者在研究当中,但是并没有一个完整的理论出现。所以为了达到材料最大的限度,发挥出GaN的极限,就有必需确定发光构造的理想的层构成,以及构造设计。

  如果不能实现好的长晶 一切都是白费功夫

  结晶生成对于LED元件制造来说,是相当关键的技术,同时也是高效率化研发的关键。无论怎么好的结构层设计,如果不能实现好的长晶,一切都是白费功夫。在初期,量产的GaN LED是face-up型的元件,在p侧的接触电极是采用透光性的薄膜电极,透过这个薄膜电极发光,而材料上则是使用Au合金电极,但是虽然具有透光性的特性,但是实际的透光度并不能满足实际应用的需求,因为通过电极的光系数,或者反射而无法散发出的光相当的多,使得发光效率一直无法获得提升。因此随后研发人员考量,因为face-up型的LED元件反射率很高,必须采用稳定性高的材料作为电极,将光从蓝宝石基板侧发出,来提高发光通量。

  通常的LED芯片有必要透过有机材料来固定,往往伴随著这种封装材料的热量出现,会使得光的质量出现劣化,产生光输出降低的问题。另一方面flip-chip的封装之所以可以达到高发光效率,因为是将结晶层置于下方,利用bump金属材料封装在基板上,所以能够有效率的把结晶层内的热量排除,而且因为不需要连接材料,所以稳定性也相当高,用来作为照明用的大电流、大型元件,这是非常好的封装设计。

  提高电极的可视光透过率 增加光通量

  最近也有工程师开始利用ITO作为透明导电膜,这是因为ITO电极的可视光透过率非常高,而且电极材料自身也不大会出现光吸收现象而造成光损耗,而且在光学设计上,本身折射率是GaN折射率和Mold材料树脂的中间值,所以能够大幅增加输出效率。因为GaN系结晶折射率很高,所以在LED元件结晶内部发出的光,并没有透出而是在内部反射,最终被材料所吸收。例如n-GaN层/蓝宝石基板界面的临界角是47度,p-GaN层/mold材料的epitaxial树脂界面的临界角是38度,一般LED的输出效率至少是30%。因此如果能够将发光层发出的光全部透出的话,很有可能可以将LED的亮度增加到目前两倍以上。

   LED构造逐渐固定化之后的一两年,关于这一方面的讨论相当多,包括了n-GaN层/蓝宝石基板界面以及p-GaN层表面等等。在n-GaN层/蓝宝石基板界面上,最有代表性的研究是透过界面加工,制造出光学的凹凸,并且在所形成凹凸的蓝宝石基板上生成结晶。

关键字:高亮度  LED  发展趋势 编辑:探路者 引用地址: 高亮度LED的发展趋势

上一篇: 电子基础知识:LED是如何实现显示功能的
下一篇:工艺流程对白光LED寿命的影响

推荐阅读最新更新时间:2023-10-18 15:56

可调光市电输入LED通用照明解决方案
  LED在电子系统中使用已经有很多年了,主要用作电子设备的指示灯。最近在亮度和色彩深度方面取得的重大进步,意味着LED现在可以用于更广泛的应用,从手机和多媒体播放机中的趣味照明,一直到取代商业和家庭照明应用中的传统光源。   推动LED照明市场发展的关键推动力是高亮度LED和智能LED控制器的出现。采用高亮度LED的产品设计师面临着许多设计挑战,包括散热管理、驱动方案、拓扑架构和已有的基础设施。   要替代现有的可调光白炽灯或卤素灯光源,必须实现这样的一个电子灯驱动系统,它不仅可以与现有的调光开关一起工作,而且可复制现有光源的调光性能。NXP(恩智浦)SSL2101 IC可以满足上述性能要求,此外,它还是一种高效的电
[电源管理]
LED路灯取代传统照明的可行性评估与测量结果
  随着LED的发光效率与寿命提升,加上具备省电、节能以及环保的优势,LED在路灯的应用上取代传统灯饰照明的可行性大为提升。在LED技术快速成长、产品特性不断改良下,LED路灯的示范计划遂在各国展开,透过LED路灯示范计划的评估与分析,提供各国政府与LED厂商在未来路灯市场的投入应用上作一参考。    LED路灯示范性计划-美国加州奥克兰市   以美国能源局在加州奥克兰市进行的LED路灯示范性计划评估为例,该项目采两阶段评估过程进行,其一阶段研究小组先选择奥克兰市的停车场做了装置前与装置后的测量,目的在于评估LED照明在一般街道上实际部署时是否可能产生安全上的负面影响;确认装置后对当地民众无特殊负面影响后,其二阶段进行
[电源管理]
紧凑型LED驱动问世 通吃汽车照明电路
  愈行愈近的2011年,对于以欧洲为目标市场的车厂而言,意味着ECE R87实行的时限将至。早在2008年欧盟已经公告,自2011年2月开始,新型小轿车、小货车均需配备日行灯(DRL),其他货车、大巴也将在2012年8月7日起配备。奥迪旗下A8、R8以及A4系列均已配有LED日行灯,从著名汽车制造商积极跟进日行灯推广的行动来看,LED采用率最高,显然欧盟此举将进一步加速车用LED市场的增长。   尽管LED的价格相较于传统照明仍不够平民,但财大气粗的汽车行业并不差钱。作为高档奢侈品,汽车的灵魂就是品质。LED凭借长寿命、低功耗成功打入了汽车市场。   据美国能源部统计,LED的使用寿命是传统光源的20~25倍,比卤素
[电源管理]
索尼开发出新一代自发光显示屏“Crystal LED Display”
  索尼于2012年1月9日在“2012 International CES”开幕前一天举行的记者招待会上宣布,开发出了自发光显示屏“Crystal LED Display”,该产品计划用于电视等。新产品样机尺寸为55英寸,像素为1920×1080。   新产品的显示元件采用RGB三色LED,可谓是真正的“LED显示器”,每种颜色的显示像素数量为207万3600个,RGB像素排列采用通常的条状(Stripe)排列方式。索尼表示作为LED显示器,实现55英寸的全高清还是“业界首次”。   这款新产品的显示性能比液晶面板更加出色:辉度约为400cd/m2,在黑暗环境下的对比度达到测量极限值以上,色彩表现范围按NTSC规格比为1
[家用电子]
LED汽车前大灯散热与光衰研究
  众所周知,半导体材料在工作时受环境温度影响较大。大功率LED的光电转换效率更低,工作过程中只有10%~25%的电能转换成光能,其余的几乎都转换成热能。加之汽车前大灯安装在炙热的发动机舱内,高温水箱、引擎、排气系统所产生的热将LED前大灯置于严酷的环境中。传统车灯灯泡所产生的热远高于LED,但灯泡输出的亮度不会因为热而变化,其热设计的重点是壳体内的均温设计。而LED的光输出却会因为自身的热或来自发动机舱的高温而影响本身PN结温稳定,LED光通量ФV和波长等重要参数受到PN结温的直接影响,这种不良的温度循环将导致发光效率和寿命急剧下降。因此散热成为LED作为光源设计的重要课题。   1、汽车前大灯的散热技术   1.1 被
[电源管理]
<font color='red'>LED</font>汽车前大灯散热与光衰研究
低损耗LED驱动器通过提高效率、延长电池寿命加
摘要:现今有很多不同的方案可以为高亮度LED (HB LED)供电。由于多数系统采用电池供电,能效成为延长电池使用寿命和系统工作时间的关键。提高电池的使用效率还有助于加快系统的“绿色”进程。在电池的有效使用期限内,相同充电次数下,延长两次充电之间的时间间隔有可能使电池的有效使用时间延长数百小时。这意味着送到垃圾填埋场或危险废物处理场进行销毁的电池数量会大大降低。 低功耗照明的驱动器通常采用简单的线性稳压器,将其配置成恒流模式(图1a)。线性稳压器具有设计简单等优点。然而,其主要缺点在于功耗较大,因为工作时,多余的电压通过检流电阻和调整管本身的发热耗散掉。这样的热损耗还严重阻碍了系统的“绿色”进程。热损耗越大,对冷却装置(风扇或大
[电源管理]
低损耗<font color='red'>LED</font>驱动器通过提高效率、延长电池寿命加
解决LED产生色度漂移问题的方法
LED技术最大的优点之一在于能够以电磁辐射的形式,产生频谱极窄的纯色光,而且效率高、无热辐射。如果产生的颜色正好是想要的颜色,固然很好,但是在普通照明应用中,我们真正想要的是“白色”的光。换句话说,我们须要以精确的比例混合多种颜色,类似经过地球大气层过滤后到达人眼时的太阳光的光谱。 尽管与荧光灯类似,也是通过在蓝光或紫外线发光器顶部涂上一层含磷材料,才能从LED光源中获得白光,但实际含磷材料的成分及其厚度和涂层位置仍是所有主要的LED制造商广泛探讨的议题,而这也反映到制造商每个月都会宣布更新、更高效的研究结果上。而且,产生光的质量也不断提高,人眼感知的质量实际上是通过测量相关色温,也就是与灯的感知色非常接近的黑体温度(CCT
[电源管理]
解决<font color='red'>LED</font>产生色度漂移问题的方法
VRS51L3074与串行FRAM在LED显示屏中的应用
VRS51L3074是Ramtron公司生产的一款运行速度可达40MIPS的单周期8051微处理器。VRS51L3074的存储器子系统具有64 KB的Flash、4 352字节的内部SRAM,以及众多的外设接口。VRS51L3074的高速增强型SPI接口速度为系统时钟的1/2,而且具有多字节传送、手动片选和输出下载脉冲的功能。这几个功能对于直接利用SPI接口读取串行Flash中的显示数据,同时向LED显示屏传送至关重要。FRAM技术是Ramtron公司融合RAM和ROM的特性,开发出的具有RAM的读写速度、又能掉电保持的存储器件。FRAM系列存储芯片具有写数据无延时,抗干扰能力强,在3.3V 环境下FRAM读写次数没有限制,
[家用电子]
VRS51L3074与串行FRAM在<font color='red'>LED</font>显示屏中的应用
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved