详解LED背光液晶电视区域调光技术的机遇与难题

最新更新时间:2011-11-13来源: chinaaet关键字:LED液晶电视  区域调光  LED背光源 手机看文章 扫描二维码
随时随地手机看文章

  节能及画质提升技术一直是彩电行业不断追求创新的领域,随着液晶电视的普及,区域调光技术成为集节能与画质提升于一身的最佳技术之一。

  传统CRT电视因是平面光源,其发光要么整片点亮,要么整片变暗,无法实现按画面分区域调光。液晶电视显示部分主要包括背光源和液晶显示单元,其中背光源主要采用直线光源CCFL和点光源LED,这就为实现区域调光提供了可能。而液晶电视的背光是整机耗能最大的部分,所以通过各种方式调节背光亮度实现节能且提升画质的技术一直是业界不断攻克的难题。

  液晶电视推出初期,其背光亮度是固定或用户通过菜单手动调节的,这与CRT的平面光源类似,要么整片变亮,要么整片变暗。而CCFL是直线光源,所以分区调节在技术上是可行的,随着液晶电视逐渐占据市场主流,背光源亮度区域调节技术也得到迅速发展,经0次元(0D) Dimming、1次元(1D)Dimming发展到当前的2次元(2D)Dimming。

  背光区域调节技术

  液晶电视背光区域调节技术即Local dimming技术,是指液晶电视系统将图像信号分成若干区域,并根据各区域图像亮度进行分析计算,然后自动控制各区域背光源的亮暗。

  0D Dimming:指液晶电视系统对整个电视画面统一调节亮度,无论是CCFL背光源还是LED背光源,所有的CCFL灯管或LED在同一场画面下亮度一样,由系统统一控制,当下一场画面亮度变暗或变亮时,系统再自动将背光统一调暗或调亮。一般算法是用软件计算整个画面的平均亮度,根据平均亮度的大小去调节背光亮暗。例如当全黑画面(如图1.1)时CPU自动将背光亮度调至最暗,而当全白画面(如图1.2)时CPU自动将背光亮度调至最亮。0D Dimming的缺点是统一调节不够准确,如当同一画面中出现纯白和纯黑的画面时(如图1.3上下黑中间白画面),系统CPU计算平均亮度后将背光亮度调至中间偏小处,这将导致纯白的地方不够亮,而纯黑的地方则不够黑。因此严格来说,0D Dimming不算区域调光。

 

  

 

  1D Dimming:英文也叫line dimming,顾名思义就是按线调节。对CCFL背光源而言,它将按每个灯管调节,或将总灯管数按相邻灯管分成若干组按组调节;对于直下式LED而言,则是按每行LED调节,或将相邻行LED分组按组分别调节。如图1.3画面,CPU会按区域计算各区域平均亮度,可以将上、下部分的灯管或LED调暗或关断,而将中间的灯管或LED调至最亮。1D Dimming比0D Dimming在技术上有了很大提升,以此来调节背光亮度可以很大程度地降低液晶电视能耗,提升画面对比度。然而当其遇到如图1.4这种在同一行中有黑白交错的画面时,又会出现同一行画面亮度调节不准确的情况。

  2D Dimming:即Local dimming,是指将整个画面按矩阵式分成若干个区域,CPU根据每个区域分布计算平均亮度,对各区域的亮度独立控制,这样就可以完美解决如图1.4画面在1D Dimming下出现的问题。

  但是,早期液晶电视主要采用CCFL背光,属于直线光源发光方式。以32英寸TV用LCD面板为例,大部分需使用12根CCFL灯管,若真的要做到Local Dimming,最多也只能划分为12个区块,且CCFL光源最大问题是点灭速度不够快,若强力驱动其开关的速度,则会减损灯管寿命,因此CCLF背光源无法做到矩阵式按区域调节亮度。

  2009年,液晶电视市场掀起LED背光潮,即液晶电视的背光采用LED。LED体积小巧,属于点光源,它为实现真正的区域调光技术提供了可能。以主流的侧背光为例,其LED灯分布在液晶屏的四周,而系统对LED灯的控制可以按矩阵式区域控制,如图2所示。

 

  

 

  2D区域调光的优点

 

  2D Dimming能对LCD背光源作不同区域、不同程度明暗变化的调节,可大幅降低耗电量,提高显示画面对比度,增加灰阶数,减少残影,提升LCD显示器画质,是最佳的区域调光技术。

  为何2D Dimming区域控制可大幅降低LCD显示器耗电量?这是因为不论平面光源、直线光源CCFL还是EEFL,其背光源一般都处在全亮状态,而当显示暗态画面时则通过降低液晶穿透率来实现,故它们对于降低耗电量没有帮助。与之相对,2D Dimming在显示暗态画面时,LED亮度随之降低,故可减少整体背光源的耗电量。日本电气通信大学针对不同型态背光源测量同一显示画面耗电量,测量结果显示:倘若0D Dimming平均耗电量为100%,2D Dimming型态背光源平均耗电量仅43%。

  2D Dimming区域控制除了可降低耗电量,也可改善LCD显示器画质表现。因为2D Dimming可以对区域亮度独立控制,而传统平面背光源只能整片点亮,故2D Dimming可大幅提高画面的动态对比度。

  LED光源快速点灭特性对于LCD显示器运动拖尾也大有改善。传统CCFL背光源因持续点亮缘故,以移动中的人眼球看去会有晃动、拖影感觉;当LED背光源模拟CRT显示器脉冲式发光,即背光源也采用间歇性点灭方式,LED背光在极短时间关断时可遮住快速移动物体所产生的拖影画面,故所呈现画质较为清楚。

  2D区域调光面临的难题及机遇

  上面提到的2D Dimming技术需要CPU同时去分析一个图像多个区域的亮度,然后根据计算结果分别控制各区域亮度,实质是通过控制LED驱动来调节各区域LED灯的亮暗。软件对图像分析的算法对CPU性能是一个考验,LED驱动时序控制在设计上也是难题,倘若时序控制不当,容易造成LED灯烧坏。

  目前液晶电视主芯片较少具有2D local dimming功能,这样整机在设计2D local dimming时需要外加DSP,且分区越多LED驱动使用越多,算法和时序控制越复杂,这大大增加了整机的成本,所以当前市场上的液晶电视使用2D local dimming功能还比较少。

  随着技术的发展,逐渐有一些60Hz转120Hz的FRC芯片将2D local dimming算法集成进来,并提供相应接口,且一般为SPI接口,因此对于120Hz LED背光液晶电视而言,实现2D local dimming功能只需增加LED驱动器成本,从而使得功能模块成本大大降低,这对该技术在120Hz液晶电视上的普及带来了机遇。然而120Hz屏比60Hz屏贵很多,基于成本原因,目前市场上占主流的液晶电视还是60Hz液晶电视,而60Hz屏又不需要用到FRC芯片,因此2D local dimming功能规模化还比较困难。

  所幸的是,3D电视在2011年快速普及,而快门式3D电视必须采用120Hz屏,因此2D local dimming功能搭借快门式3D电视的东风将有望得到快速成长。

关键字:LED液晶电视  区域调光  LED背光源 编辑:探路者 引用地址:详解LED背光液晶电视区域调光技术的机遇与难题

上一篇:NXPSSL21017.5W反激LED驱动参考设计
下一篇:工程师分享:数字LED驱动的街道照明系统

推荐阅读最新更新时间:2023-10-18 16:04

LED、CCFL显示效果对比分析
  随着几乎所有厂商开始大力推广并支持 LED背光源 , LED 取代传统的灯管式背光( CCFL )已经成为了不可逆转的趋势。不过由于LED从今年开始才开始正式进入大规模量产阶段,因此市面上采用LED背光源的 显示 器产品相对而言所占的比重依旧不是很大,传统采用CCFL背光源的显示器产品依旧占据着市场的主流地位,考虑到上游的背光模组厂依旧还有一定规模的CCFL背光产能,因此CCFL背光源也不会立刻被淘汰。    LED背光 显示器也是一种 LCD  当各大厂商推出LED这个概念时,我们看到很多网友和消费者对这个概念依旧存在一定的误解,将LED和LCD完全弄混淆,以至于在论坛中提出“我现在应该买 LED显示
[电源管理]
<font color='red'>LED</font>、CCFL显示效果对比分析
led电视与液晶电视的区别
led电视与液晶电视有什么区别 led液晶电视 从原理上看,液晶显示设备有些像是街头那些广告灯箱,背后的光源经过一定扩散,均匀地照射在绘有画面的透明胶片上,从而透射出亮丽的画面。液晶板就像是那层胶片,但是其中的画面是会变的。 传统的液晶显示设备都采用CCFLS(冷阴极荧光灯,cold cathode fluorescent lamps)作为光源,虽然名字很专业,但我们把它理解为家里用的日光灯,但是灯管非常细。很多物体在日光灯下的色彩都很怪异,因为它发出的光线不是真正意义上的日光。我们早已适应的日光光线由赤橙黄绿青蓝紫等各色光线按照一定比例组合而成。但日光灯的光线在某些色彩上过分强调,某些色彩则缺得厉害。 于是
[模拟电子]
<font color='red'>led</font>电视与<font color='red'>液晶电视</font>的区别
基于S3C2440的LED背光源节电系统设计方案
引言 节能环保技术是当前世界所关注的焦点,在液晶显示模组中,背光源的功耗最高可占总功耗的50%以上。尤其在10in 以下显示产品如手机、PDA、MP3 等便携式设备中,基本采用电池供电,功耗问题尤为突出。为有效降低液晶显示器背光源的亮度,以达到节电目的,本文在ARM 开发平台上实现了一种基于直方图变换的背光源调光方法,实验证明,本文提出的方法在失真度为5%的情况下可实现背光节电约35%. 1 背光源调光方案 以TFT 液晶面板结构为例,包括背光、偏光片、液晶阵列、彩色滤光片等部分,人眼所感知的显示图像为上述各部分的综合效果。假设背光亮度归一化后设为b(为 区间实数),0 对应于背光关闭情况,1 对应于背光发光亮度最大情
[电源管理]
基于S3C2440的<font color='red'>LED</font><font color='red'>背光源</font>节电系统设计方案
显示质量占优势 大尺寸LED背光逐步产业化
目前作为液晶电视主要背光源的冷阴极灯管(CCFL)有一些明显的缺点:如低色域、含有汞、发光效率低等等。而LED(发光二极管)以其色域高、发光效率高、响应时间快、环保等特点,对液晶电视背光领域产生了重要的影响。 2004年,索尼率先将LED背光技术产品化,推出了采用LED背光的23英寸LCD(液晶)显示器和40英寸、46英寸的液晶电视。尽管这些产品都存在功耗高、发热量大和价格高的缺陷,但LED在显示质量方面的优势却得到了充分体现。索尼在2006年国际消费者电子产品展CES上公开展示了其82英寸液晶电视样机,使用的背光源都是LED而非传统CCFL。2007年索尼展示并向市场推出了采用LED背光技术的7
[电源管理]
显示质量占优势 大尺寸<font color='red'>LED</font>背光逐步产业化
LED连接排列方式直接影响背光源性能
  LED背光源技术液晶电视从技术上讲,目前主要有侧入式和直下式两种方式。虽然两种技术各有千秋,但从成本等方面综合考虑,侧导光LED背光模组正在成为一种主流趋势。   侧导光LED背光模组的设计要考虑在满足光学指标的基础上尽量降低成本,同时还要体现侧导光LED背光源轻、薄的特点。所以,LED的发光效率和色域对液晶电视背光源LED的选型有着重要的影响。LED的连接排列方式一般分为三种主要结构,即串联、并联以及串、并联混合的方式,几种方式各有利弊。    LED串联    优点 :电流处处相等 LED亮度基本一致    缺点 :一个LED开路所有LED都不工作   LED串联方式的优点是,在整个串联电路
[电源管理]
三种LED彩电技术登场谁才是未来的主宰?
   LED光源技术应用于液晶电视领域,目前主要有三种应用方式:直下式三原色RGB-LED光源,直下式白色LED光源和侧边式白色LED光源。这三种LED技术的成品目前在市面上都有,究竟谁将成为未来的主导呢?       抢在年底旺销季到来之前,国内平板彩电市场刮起了LED风。三星、夏普、创维、海尔等公司均有新品上市,加上原有海信、索尼、清华同方三家公司,LED电视几乎已经形成普及之势。对于未来的彩电产业LED电视究竟会扮演什么角色、LED电视自身技术又将有怎样的演化进程,必然是每一个关心平板电视的人都会关心的问题。 三种LED彩电技术登场       了解LED彩电的本质,首先必须知道目前所谓的LED彩电和LED电视之
[家用电子]
夏普推出侧边式LED液晶电视 兼顾画质与超薄
      7月20日消息,夏普公司今日在上海发布了四原色液晶电视显示技术,并推出该品牌首款侧边式LED背光源液晶电视。此前,夏普LED电视为保持画质均采用直下式,由此也使得其机型较厚。目前搭载了四原色技术的夏普侧边式LED电视则可在保证画质的同时做得更为纤薄。   夏普公司今日在国内推出了采用独有的“四色技术”并搭载了侧边式LED背光源的FF1系列液晶电视产品。   据夏普公司方面介绍,所谓四色技术,即在传统的红绿蓝三原色的基础上增加了黄色,使其电视产品色域更广,画面更为明艳。   据了解,采用该技术的夏普液晶电视已于4月份在欧美市场上市,7月份在中国、日本上市,在年底前,将推向全球市场。   业内人士分析,四色
[家用电子]
LED背光液晶电视区域调光技术
  节能及画质提升技术一直是彩电行业不断追求创新的领域,随着 液晶电视 的普及,区域调光技术成为集节能与画质提升于一身的最佳技术之一。   传统CRT电视因是平面光源,其发光要么整片点亮,要么整片变暗,无法实现按画面分区域调光。液晶电视 显示 部分主要包括背光源和 液晶 显示单元,其中背光源主要采用直线光源 CCFL 和点光源 LED ,这就为实现区域调光提供了可能。而液晶电视的背光是整机耗能最大的部分,所以通过各种方式调节背光 亮度 实现节能且提升画质的技术一直是业界不断攻克的难题。   液晶电视推出初期,其背光亮度是固定或用户通过菜单手动调节的,这与CRT的平面光源类似,要么整片变亮,要么整片变暗。而CCFL是直线
[电源管理]
<font color='red'>LED</font>背光<font color='red'>液晶电视</font><font color='red'>区域</font><font color='red'>调光</font>技术
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved