在路灯应用中,一种可行的配置是创建 300V/0.35 安培负载的 80 个串联的 LED。在选择电源拓扑结构时,需要制定隔离和功率因数校正 (PFC) 相关要求。隔离需要大量的安全权衡研究,其中包括提供电击保护需求和复杂化电源设计之间的对比权衡。在这种应用中,LED 上存在高压,一般认为隔离是非必需的,而 PFC 才是必需的,因为在欧洲 25 瓦以上的照明均要求具有 PFC 功能,而这款产品正是针对欧洲市场推出的。
就这种应用而言,有三种可选电源拓扑:降压拓扑、转移模式反向拓扑和转移模式 (TM) 单端初级电感转换器 (SEPIC) 拓扑。当 LED 电压大约为80 伏特时,降压拓扑可以非常有效地被用于满足谐波电流要求。在这种情况下,更高的负载电压将无法再继续使用降压拓扑。那么,此时较为折中的方法就是使用反向拓扑和 SEPIC 拓扑。SEPIC 具有的优点是,其可钳制功率半导体器件的开关波形,允许使用较低的电压,从而使器件更为高效。在该应用中,可以获得大约 2% 的效率提高。另外,SEPIC 中的振铃更少,从而使 EMI 滤波更容易。图 1 显示了这种电源的原理图。
图1:转移模式 SEPIC 发挥了简单 LED 驱动器的作用。
该电路使用了一个升压 TM PFC 控制器来控制输入电流波形。该电路以离线为 C6 充电作为开始。一旦开始工作,控制器的电源就由一个 SEPIC 电感上的辅助绕组来提供。一个相对较大的输出电容将 LED 纹波电流限定在 DC 电流的20%。补充说明一下,TM SEPIC中的 AC 电通量和电流非常高,需要漆包绞线和低损耗内层芯板来降低电感损耗。
图 2 和图 3 显示了与图 1 中原理图相匹配的原型电路的实验结果。与欧洲线路范围相比,其效率非常之高,最高可达 92%。这一高效率是通过限制功率器件上的振铃实现的。另外,正如我们从电流波形中看到的一样,在 96% 效率以上时功率因数非常好。有趣的是,该波形并非纯粹的正弦曲线,而是在上升沿和下降沿呈现出一些斜度,这是电路没有测量输入电流而只对开关电流进行测量的缘故。但是,该波形还是足以通过欧洲谐波电流要求的。
图2:TM SEPIC 具有良好的效率和高 PFC 效率。
图2:线路电流轻松地通过 EN61000-3-2 Class C 标准。
关键字:高效驱动 LED 离线式
编辑:探路者 引用地址:高效驱动LED离线式照明
推荐阅读最新更新时间:2023-10-18 16:18
如列车快速前行的LED照明灯具发展史
随着LED照明灯具的逐步发展,在亮化工程辅助照明等公共场合,LED渐渐替代了一些传统光源产品。2009年,LED开始在发达国家进入主照明普及。在电费较高,使用时间较长的商业应用场所,LED灯具迅速成为市场的新宠。作为LED照明灯具的用途,LED市场发展分几个阶段。
第一阶段,LED灯具实用新型阶段。
在上一阶段的基础上,市场对LED灯具产品有了一定的认可和接受。LED灯具的环保,体积小,高可靠性等其他特性逐渐凸显出来。由此而开发的一系列完全有别于传统光源应用的产品会大行其道。照明行业会出现更大更广的一个发展空间。光源不再是仅仅起到照明作用,它的多变使得更贴切人们工作生活中的点点滴滴。各厂商拼的是设计
[电源管理]
针对高分辨率照相手机的LED闪光灯超级电容参考设计
手机正在变成终极集大成便携式消费 电子 平台。它的性能包括:捕捉高质量图像、Wi-Fi网络访问、清脆的音频、更长的通话时间、以及更长的 电池 寿命。不过,一个主要的设计挑战也正在浮现出来。为了适应高度复杂的移动应用,手机 电池 仍然需要费很大的力气才能提供足够的峰值功率,这就推动了可为高性能操作提供所需功率的 电路 的需求,这种 电路 可以在不过载电池的前提下在短时间内储存大电流。
对高级照相手机制造商来说,最重要的挑战就是提供高亮度相机闪光灯所需的大峰值电流。随着照相手机的分辨率增长到三百万像素及以上,产生高质量图像所需的光通量也已急剧提高。为了匹配数码相机的照片质量,必须以高达2A的电流 驱动 LED闪光灯,或将氙气闪光
[模拟电子]
自制时尚旋转LED球形屏
旋转 LED 球形屏是一款新型的新颖的居家装饰品和字幕宣传工具,适合家庭、汽车、娱乐场所等的装饰,也同样适合作为超市、宾馆、商厂、大型广场等的宣传 显示 工具。其主要目的是能够360度全方位观赏屏幕显示的内容,给人以立体的观赏效果,给观众带来美的享受。
一、基本思路
1.用最少的LED开发一种新型的立体 显示屏 幕,可以从各个方向欣赏到显示的内容,并且功耗要低!
2.设计一款中型的 点阵屏 幕,不需要拆卸即可以通过 无线 方式随时随地改变屏幕显示的内容,像书写普通的 液晶 屏一样方便。
3.可以很方便的使屏幕内容处于静止、放大或者旋转状态,使屏幕更加人性化。
4.可以水平放
[电源管理]
LED外延片基础知识
外延片的生产制作过程是非常复杂,展完外延片,接下来就在每张外延片随意抽取九点做 测试 ,符合要求的就是良品,其它为不良品(电压偏差很大,波长偏短或偏长等)。良品的外延片就要开始做电极(P极,N极),接下来就用 激光切割 外延片,然后百分百分捡,根据不同的电压,波长, 亮度 进行全 自动化 分检,也就是形成 LED 晶片(方片)。然后还要进行目测,把有一点缺陷或者电极有磨损的,分捡出来,这些就是后面的散晶。此时在蓝膜上有不符合正常出货要求的晶片,也就自然成了边片或毛片等。不良品的外延片(主要是有一些参数不符合要求),就不用来做方片,就直接做电极(P极,N极),也不做分检了,也就是目前市场上的LED大圆片(这里面也有好东西,如方片
[电源管理]
一款节能的袖珍型白光LED手电筒方案
本例描述的是一种白光 LED 手电筒,它可放置在空胶棒管中,并有较长的电池充电寿命。其电路仅由几个常用零件组成。经证实,这种手电筒十分耐用,作者组建的原型已经使用了近五年,但仍然保持着良好的工作状态。
该手电筒使用一节1.2V/2500mAhr镍镉电池供电(图1)。利用一个基于抽头电感的简单晶体管升压器,可有效升高电压(约增加80%),直至达到一只典型白光LED所需电压水平(在本例中,电压约为3V)。Q1与Q2形成了一个非稳多谐振荡器,集电极产生相位相差180°的方波。
假设在上电时,Q2关断,Q1导通。在这种条件下,Q2的集电极为高,Q3通过Q2的集电极电阻而导通。Q3导通时,电流通过电感器的前半部分
[电源管理]
万用表检测LED要用什么档位
万用表检测LED可以要用二极管档 LED也属于二极管,同样具有单向导通的特性,只允许电流从LED的正极流到负极,所以我们可以用万用表的二极管档来测量LED的好坏,红、黑表笔是有方向的,第一步可以先交换表笔测量一下,以免判断错误,但LED与普通二极管不一样,它的正向导通压降比较高,不同颜色的LED的正向导通压降也不同,如果万用表二极管档位提供的电压低于LED的正向导通压降,LED就只能微微发亮甚至不亮了。 万用表二极管档位测量原理 二极管档会提供一个恒定电流,一般是1mA(有些万用表是2mA),当连接二极管时,就可以测量出二极管PN结的压降,从而判断二极管的好坏。由于二极管档提供的电流很小,在测量LED时,如果L
[测试测量]
STM32利用定时器1控制LED闪烁
配置LED灯 //PC13 void LED_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC,ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(GPIOC, &GPIO_InitStructure); }
[单片机]
浅析LED车载显示面板传导模型和影响散热效果进行计算校验测试数据和ANSYS软件
随着LED生产工艺的不断发展,车载手机及其他显示需要亮度越来越高,散热也就成了不得不面临的棘手问题。本文首先阐述了温度上升对LED性能的影响,研究影响散热效果的主要因素,并结合车载显示等特点,提出了一种车载显示热学分析等效模型。然后针对目前车载显示主要采用的被动式散热方式,通过对车载模型进行热学测试计算以及ANSYS软件仿真,最后通过对测试模拟结果的系统分析,给出参考结论,为改善当前LED高亮度显示的散热设计提出了指导性意见。 面板行业对我们来说已不再陌生,在生活中随处可见,大到户外显示屏小到手机Pad这样的终端都有,而且随着技术进步车载显示出货量占了更大比例。LED作为新型高效节能光源,进入显示领域已日趋成熟。并且对于高亮度
[嵌入式]