LED驱动电源的单极PFC反激式开关电源方案

最新更新时间:2012-02-21来源: 电子发烧友关键字:电源管理  LED驱动  PFC 手机看文章 扫描二维码
随时随地手机看文章

    LED驱动电源要求在5W以上的产品都要求高功率因素,低谐波,高效率,但是因为又有体积和成本的考量,传统的PFC+PWM的方式电路复杂,成本高昂,因此在小功率(65W左右)的应用场合一般会选用单极PFC的方式应用,特别是在T5,T8等LED驱动电源得到广泛的应用,并成为目前的主流应用方案。目前市面上的PFC有很多,下面以市面上得到广泛应用的LD7591及其升级版本LD7830,主要用LD7830来做说明介绍。

    一、介绍:

    LD7830是一款具有功率因素校正功能的LED驱动芯片,它通过电压模式控制来稳定输出且实现高功率因素(PF)与低总谐波失真(THD)特性。LD7830能在宽输入电压范围内应用,且保持极低的总谐波失真。LD7830具备丰富的保护功能,如输出过压保护(OVP),输出短路保护(SCP),芯片内置过温保护(OTP),Vcc过压保护,开环保护等保护功能令LED驱动电源系统工作起来更加安全可靠。LD7830在LD7591的基础上增加了高压启动,OLP保护功能和软启动功能,使系统的待机功耗更低至0.3W以下,同时短路保护更加可靠。

    二、LD7830特点:

内置500V高压启动电路

高PFC功能控制器

高效过渡模式控制

宽范围UVLO(16V开,7.5V关)

最大250KHZ工作频率

内置VCC过压保护

内置过载保护(OLP)功能

过电流保护(OCP)功能

500/-800mA驱动能力

内置8ms软启动

内置过温保护(OTP)保护

    三应用范围:

AC/DCLED照明驱动应用

65W以下适配器

    四、典型应用

 
图一

    五、系统设计

    LD7830的典型应用为反激拓扑结构,如图一所示。

    5.1我们首先介绍LD7830的反激工作原理,假设交流输入电压波形是理想正弦波,整流桥也是理想的,则整流后输入电压瞬时值Vin(t)可表示为:

其中VPK为交流输入电压峰值,VPK=√2×VRMS,Vrms为交流输入电压有效值,FL为交流输入电压频率。再假定在半个交流输入电压周期内LD7830误差放大器的输出VCOMP为一恒定值,则初级电感电流峰值瞬时值IPKP(t)为:

其中IPKP为相对于输入电压初级电感电流峰值的最大值。

    在反激电路中,当MOSFET导通时,输入电压Vin(t)对电感充电,同时输出电容对负载放电,初级电感电流从零开始上升,令θ=2×π×FL×t:

Ton为MOSFET导通时间,Lp为初级电感量,由上式可见,TON与相位无关。

    假设变压器的效率为1且绕组间完全耦合,当MOSFET关断时,次级电感对输出电容充电和对负载放电,则:

其中,TOFF为MOSFET关断时间,IPKS(θ)为次级峰值电流瞬时值,Ls为次级电感量,Vout为输出电压,VF为输出整流管正向压降,n为初次级匝比,TOFF随输入电压瞬时值变化而变化。

    工作电流波形如图二所示,可见,在半个输入电压周期内,只要控制TON固定,则电感电流峰值跟随输入电压峰值,且相位相同,实现高功率因素PF.

 
图二

    5.2下面将针对反激拓扑结构介绍相关参数设计流程

    5.2.1首先根据实际应用确定规格目标参数,如最小交流输入电压Vinmin,最大交流输入电压Vinmax,交流输入电压频率FL,输出电压Vout,输出电流Iout,最大两倍频输出电压纹波ΔVo等。然后针对目标参数进行系统参数预设计,先估计转换效率η来计算系统最大输入功率;最大输入功率Pin可表示为:

再确定系统最小工作频率,LD7830的开关频率是个变化量,表示为:

    最小开关频率Fsw-min出现在最小输入电压的正弦峰值处。系统设计中,最小开关频率Fsw-min一般设定在35kHz或更高。

    确定变压器反射电压VOR,反射电压定义为:VOR=n(Vout+Vf),VOR的取值影响MOSFET与次级整流管的选取以及吸收回路的设计。

    5.2.2变压器设计

    首先确定初级电感量,电感的大小与最小开关频率的确定有关,最小开关频率发生在输入电压最小且满载的时候,由公式推导有:

  

其中Ko定义为输入电压峰值与反射电压的比值,即

一般说来Ko越大PF值会越低,总的THD%会越高。

    确定初级电感量LP后,就该选择变压器磁芯了,可以参考公式AP=AE×AW选取,然后根据选定的磁芯,确定初级最小绕线圈数Npmin来避免变压器饱和,参考公式:

然后确定次级绕组匝数,初次级的匝比由VRO决定:

同理推导并根据规格书定义的Vcc电压可以得出Vcc绕组的匝数,LD7830的Vcc典型值设定在16V。

定义: 

LP:初级电感量

NP:初级匝数

IPKP:初级峰值电流

BM:最大磁通饱和密度

AE:磁芯截面积

Po:输出功率

 

    5.2.3初级吸收回路设计

    当MOSFET关断时,由于变压器漏感的存在,在MOSFET的漏端会出现一个电压尖峰,过大的电压加到MOS管的D极会引起MOS击穿,而且会对EMI造成影响,所以要增加吸收回路来限制漏感尖峰电压。典型的RCD吸收回路如图三所示:


图三

RCD回路的工作原理是:当MOSFET的漏端电压大于吸收回路二极管D1阴极电压时,二极管D1导通,吸收漏感的电流从而限制漏感尖峰电压。设计中,缓冲电容C1两端的电压Vsn要设定得比反射电压VRO高50--100V,如图四所示,称为漏感电压ΔV,Vsn不能设计太低,设计太低将增加RCD吸收回路功耗。缓冲电容C1的设计根据能量平衡,

 
图四

IPKPMAX为全电压范围内IPKP的最大值,缓冲电容C1SN要承受大电流尖峰,要求其等效串联电阻ESR很小,R1根据功耗选择合适的W数,阻值一般在47K-120K之间

吸收回路二极管D1通常选择快恢复二极管,且导通时间也要求快,反向击穿电压要求大于选择的MOSFET的击穿电压BVDSS,一般在65W以下应用场合选用额定电流1A的快恢复二极管作为吸收回路二极管。

    5.2.4MOS管的选取

    开关管MOSFET最大漏极电流IDMAX应大于开关管所流过的峰值电流IPKP至少1.5倍,MOSFET的漏源击穿电压(参考图四)BVDSS应大于最大输入电压,VOR以及漏感引起的尖峰之和,一般应留至少90%的余量。

  

    5.2.5次级整流管的选取

考虑一定的裕量,次级整流管D最大反向电压VRM需满足:

  

因为反激式开关电源次级整流二极管只有在电源Toff的时候才会导通,输出在导通时必须能够承受整个输出电流的容许值。输出二极管需要的最小正向导通峰值电流为:

Dmax为工作周期,如果设定Dmax为0.5则Ifps>4Iout

 

    5.2.6输出电容的选取

    输出电容电压通常呈现两种纹波,一种是由高频输出电流引起,主要与输出电容的等效窜连电阻(ESR)大小有关,另外一种是低频纹波,为了获得较高的PF值,环路带宽通常较窄,因此输出不可避免地出现较大的两倍输入电压频率纹波,其值与电容大小有关,一般说来低频纹波满足要求时,高频纹波因为电容等效ESR够小,可以忽视。电容的容量可以参考各个厂家的规格书(一般选用高频低阻型)选用,根据产品的实际工作温度,电压和考虑产品的MTBF选取合适的电容系列型号。

    5.2.7IC主要外围参数选取

    5.2.7.1最大导通时间典型参数选取

 
图五

5.2.7.2CsPin参数选取

R1与C1为用来滤除突波的滤波器

R1:100?~300?

C1:100PF~470PF

 
图六

 

5.2.7.3RZCD参数选取

  
图七

六、用LD7830和LD8105做的24V0.7A的实际应用实例

6.1.电路:

 
图八

 

6.2.实际测试相关参数:

6.2.1空载功耗在输入AC264V为0.29W,低于0.3W

 
图九

6.2.2效率和PF值曲线

 
图十

 

    6.2.3CV-CC曲线以及说明

    Led照明驱动电源必须以恒流CC模式和恒压CV模式来控制,由于LED的正向导通压降会随着焊接面的温度升高而降低,导致LED的电流会增大,使温度升高,从而导致LED的寿命减少,甚至可能会造成产品的损害。所以参考图八电路,次级部分采用了LD8105来做CV/CC模式控制,LD8105是一款高精度的CV/CC模式控制IC,与其它同类IC比较具有电流检测电压低,Vcc输入电压比较宽,工作电流小等特点,从而可以提高整个系统的效率和应用范围。

 
图11

    本文的目的是为了进行类似电路设计的开发人员或者准备用类似线路做设计的人员提供一个基本设计的参考资料,希望本文中一些经验能够帮到大家。

关键字:电源管理  LED驱动  PFC 编辑:探路者 引用地址:LED驱动电源的单极PFC反激式开关电源方案

上一篇:LED灯泡的噪声对策(二):部件的选择和配置最为关键
下一篇:FairchildFL77308.4W调光LED驱动方案

推荐阅读最新更新时间:2023-10-18 16:25

STSTEVAL-ILL015V1RGBLED调光解决方案
ST公司的STEVAL-ILL015V1是采用STP24DP05和STM32™ MCU的LED调光演示板,两个STP24DP05可连接16个RGB LED,采用ST1S010的高效开关DC/DC电源,DC电源电压从7.5V到18V,输入电流小于0.7A,LED电流调整.本文介绍了STP24DP05主要特性,典型应用电路图以及STEVAL-ILL015V1 LED调光演示板主要特性,电路图和材料清单. STEVAL-ILL015V1 - LED dimmer demonstration board based on the STP24DP05 and STM32™ STP24DP05:24-bit constant current
[电源管理]
STSTEVAL-ILL015V1RGBLED调光解决方案
TI智能手机整体解决方案:包括处理器、电源管理和音视频
如今的智能手机对高级多媒体的特性日益增长,考虑到性能和尺寸要求,集成了音频、ESD 保护、电源管理和整体供电效率的 D 类音频放大器、触摸屏控制器就尤为重要。本文介绍TI的智能手机无线解决方案,包括 OMAP? 应用处理器、电源管理、音视频、显示/照明和触摸屏方案。 智能手机的方框图 智能手机的设计注意事项 如果当今的智能电话集成了具有基础多媒体功能的个人整理程序和电子邮件管理工具,以及手持终端功能,则通常的“开机”时间相比入门级移动电话的开机时间,对于最终用户而言更为关键。特性集推动了对强大处理功能、更大(更清晰)显示屏、触摸屏控制和麦克风功能的需求。若要满足电话的性能和外形尺寸要求,必须仔细考虑电源电流和封装尺寸。因
[电源管理]
TI智能手机整体解决方案:包括处理器、<font color='red'>电源管理</font>和音视频
ADI推出集成电源管理开关稳压器ADP2441
  Analog Devices, Inc. 最近推出集成电源管理开关稳压器系列的最新款产品DC/DC开关稳压器ADP2441。这款全新36 V、1A(放大器)降压稳压器集成了低导通电阻和高端及低端电源开关,能够提供紧凑的负载点设计和94%以上的效率。在轻负载条件下,ADP2441会自动在脉冲跳跃模式(PSM)下工作,以便降低开关损耗,提高能效。   ADP2441支持4.5 V至36 V的宽输入范围,适合各种负载点应用,包括工业与通信设备,以及医疗电子。输出电压可在0.6 V至90%输入电压范围内调整。这款全新稳压器还提供低至50 ns(纳秒)的最短导通时间,适合单级、高输入到低输出电源转换,节省了宝贵的电路板空间。   ADP
[电源管理]
ADI推出集成<font color='red'>电源管理</font>开关稳压器ADP2441
首尔半导体对SATCO侵犯其LED驱动器专利行为提起诉讼
据国际著名LED 专营企业首尔半导体(简称“首尔”)宣布,其已提起另一项关于其LED驱动器专利被侵权的诉讼,这一次的诉讼对象是SATCO Products, Inc. (“SATCO”)。 在其控诉中,首尔声称SATCO正在销售的各种LED照明产品侵犯了首尔11项涉及LED驱动技术的专利。 所涉及的LED驱动专利广泛用于白炽灯、荧光灯、壁灯和顶灯的替换灯泡。该专利技术涵盖了带有线性驱动的产品,可用于家用电压下直接运行LED,用于产生无闪烁灯光的步进操作驱动器,以及用于实现智能照明的可调光驱动器。 在此前的几起不同市场领域的诉讼中,首尔成功地以法律手段维护了其LED驱动器专利权利,这些领域包括大卖场型零
[手机便携]
手持设备LCD背光LED驱动方案浅述
进入二十一世纪,能源消耗日益成为整个人类社会关注的焦点。出于对于照明的基本需求,如何更有效的利用各种能源产生更多的照明,成为探索新的照明技术的巨大驱动力。从原始的燃料照明到白炽灯,从荧光灯到各种发光材料的探索,催生出LED照明技术。在如今社会,各种媒体设备照明环境需求的差异化,进一步促进了人类探索如何利用各种高亮度LED进行照明。LED在照明方面的应用已经吸引广泛关注。 LED基本原理及性能特点 首先我们来介绍一下LED的基本原理以及性能特点。LED的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好。发光二极管的核心部分是由p型半导体和n
[电源管理]
手持设备LCD背光<font color='red'>LED驱动</font>方案浅述
LED驱动器与升压转换器的编程设计实现
大多数采用白色发光二极管(WLED)背光显示器的便携式产品同时还需要辅助的LED照明。一般需要两个IC:一个感性升压转换器,使背光LED获得最大效率(》80%);一个电荷泵,允许独立控制各辅助LED。此外,每个IC都需要一个可编程的电流吸收器来进行亮度控制或者混色,这会导致成本和复杂度迅速上升。本篇设计技巧介绍如何将单个可编程LED驱动器与一个低成本升压转换器结合在一起,实现灵活高效且易于编程的解决方案。图1显示使用升压转换器ADP1612(见图 2)和并行LED驱动器ADP8860(见图 3)的实现方案。      图1. 升压转换器ADP1612和LED驱动器ADP8860实现背光和
[电源管理]
<font color='red'>LED驱动</font>器与升压转换器的编程设计实现
有源功率CCM Boost PFC转换器
  CCM工作模式是指在额定负载下,在一个开关周期内,转换器的电感电流连续的工作模式(在轻载时电感电流仍然是断续的)。图1所示为CCM Boost PFC转换器的控制原理图。主电路由单相桥式整流器,Boost DC/DC转换器组成;控制电路包括电压误差放大器VA及基准电压Ur、电流误差放大器CA、乘法器M脉宽调制器和驱动器等。   图1电路的工作原理是:输人电流亦即电感电流iL由电流采样电阻Rs检测,将检测到的信号送入电流误差放大器CA中。乘法器M有两个输人,即X和Y。转换的输出采样电压Uf(图中H为分压系数)和基准电压Ur进行比较,其差值通过电压误差放大器VA,VA的输出信号为X;整流后的输人电压μdc(一个工频周期内为双半
[电源管理]
有源功率CCM Boost <font color='red'>PFC</font>转换器
便携设备LCD背光LED驱动方案简述
进入二十一世纪,能源消耗日益成为整个人类社会关注的焦点。出于对于照明的基本需求,如何更有效的利用各种能源产生更多的照明,成为探索新的照明技术的巨大驱动力。从原始的燃料照明到白炽灯,从荧光灯到各种发光材料的探索,催生出LED照明技术。在如今社会,各种媒体设备照明环境需求的差异化,进一步促进了人类探索如何利用各种高亮度LED进行照明。LED在照明方面的应用已经吸引广泛关注。 LED基本原理及性能特点 首先我们来介绍一下LED的基本原理以及性能特点。LED的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好。发光二极管的核心部分是由p
[手机便携]
便携设备LCD背光<font color='red'>LED驱动</font>方案简述
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved