降压型LED驱动器设计方案

最新更新时间:2012-03-22来源: 电子发烧友关键字:降压型  LED  驱动器设计 手机看文章 扫描二维码
随时随地手机看文章

        概述

  本参考设计针对便携式投影仪的6A降压型LED驱动器,参考设计基于PWM HB LED驱动器MAX16821,该电路可驱动一个LED;驱动RGB三色LED时需要使用三片MAX16821。

  LED驱动器规格

  输入电压范围(VIN):10V至15V 。

  输出电压(VLED):4.5V至6V。

  输出电流(ILED):1.5A至6A,可模拟控制 。

  模拟控制电压:1.1V至2.8V,对应1.5A至6A。

  最大LED导通占空比:50% 。

  最大LED电流上升/下降时间:< 1us 。

  最大LED电流纹波:6A时,< 15% 。

  输入

  Vin (J1和J2接VIN+,J3和J4接GND):10V至15V输入电源。

  通/断控制(J8):浮空或连接到+5V,使能驱动器;J8短路时禁止电路板工作。

  PWM输入(J7):PWM调光输入,连接一个幅度为3V至5V的PWM信号。为了保证PWM输入能够驱动Q1和Q7,信号源在驱动300pF负载时,上升/下降时间应小于500NS。由于输出信号的上升/下降时间控制在1?s以内,任何周期为1?s的3至4倍的PWM信号都可以使用。

  LED电流控制(J6):LED电流调节输入。加载1.1V至2.8V电压,可以在1.5A至5A范围调整LED电流。

  输出

  LED+ (J9、J10):接LED阳极。

  LED- (J11、J12):接LED阴极。

  电感电流输出(J5):提供一个与LED电流成比例的信号。OUTV电压为R9电压的135倍。

  

MAX16821 LED驱动器电路板

 

  图1 MAX16821 LED驱动器电路板

  

LED驱动器电路板原理图

 

  图2 LED驱动器电路板原理图(点击放大)

  电路说明

  LED驱动器对10V至15V输入电源电压进行降压转换,恒流驱动一个正向导通电压为4.5V至6V的LED。使用MAX16821 PWM HB LED驱动器实现降压转换。由于平均电感电流等于LED电流,可以通过控制平均电感电流恒流驱动LED,开关频率通过电阻R6 (200kΩ)设置为300kHz。

  电路包含两个控制环路:内部电流环路根据外部电压环路的输出控制电感电流;外部电压环路设置内部电流环路,最终控制LED电流。外部电压环路监测OUTV引脚,U1的输出产生EAOUT信号。EAOUT信号控制内部电流环路,即控制电感电流。

  模拟LED电流控制

  运算放大器U1接受1.1V至2.8V的模拟输入,驱动MAX16821的SENSE+输入引脚,在1.5A至6A范围内调节LED电流。当LED电流达到6A时,连接到U1的参考电压和电阻分压器在U1输出端产生大约20mV (高于VOL的最差值)的电压。2.8V的模拟控制输入产生该输出电压。LED电流上升到6A时,R1和R22构成的电阻分压器将OUTV的电流检测信号分压,产生一个很小的电压叠加在U1输出端;由R1和R22生成的电压等于SENSE+输入端100mV的外环参考电压。注意,OUTV信号是R9、R18电流检测信号放大后的电压,放大倍数为135V/V。随着模拟控制输入电压从2.8V开始下降,U1的输出电压从20mV开始线性增大。U1输出电压的升高,使SENSE+输入在较低的LED电流下达到100mV。当模拟控制输入降至大约1.1V时,U1输出增加到80mV,LED电流降至1.5A。

  PWM调光

  在PWM处于关闭状态时,LED输出端的MOSFET Q9导通,LED短路。LED电流降至零,具体取决于Q1的导通时间(本设计中远远小于1?s)。PWM处于关闭期间始终保持电感电流。PWM开始导通时,Q1关闭,电感电流对输出电容充电。输出电压一旦达到LED的起始导通电压,LED电流开始上升。LED电流从0A上升到满幅值的时间取决于几个因素:电感电流、输出电容以及LED的正向导通电压的变化。本参考设计仅在LED电流设定为6A时满足< 1?s LED开启时间的要求。如需在降低的电流时得到快速的LED开启时间,可增大电感值并减小输出电容。

  反馈补偿

  电阻R2和R23限制高频电流环路的增益,补偿次级谐波振荡。在电流环路传输函数中远远低于单位增益频率的位置设置一个零点,既可以保证在低频区有足够的增益,又可以保证电感电流的误差非常小。利用C1、C19构建该零点。在PWM关闭、导通时,Q1和Q2交替连接到RC网络,实现补偿。本设计可保持C1、C19的电量,使PWM响应更加迅速。

  由于直接测量电感电流,驱动电路的传输函数中没有输出极点。外部电压环路简化成一个单极点系统,而电压误差放大器在设定频率范围内确定这唯一极点。为了避免两个反馈环路相互干扰,C21和C22将外部环路的单位增益频率降至电流环路单位增益频率的十分之一。Q7和Q10保持补偿电容的电荷,保证在PWM脉冲变化时,电压误差放大器的输出能即刻切换至所要求的数值。电阻R24、R25可避免Q7和Q10状态变化产生的电荷注入而导致的C21、C22充/放电。

LED电流上升/下降时间

  本设计要求在PWM工作产生6A LED电流时,LED电流的上升/下降时间保持在1?s以内。这就要求使用较小的输出滤波电容和较大电感,在满足LED电流最大纹波的要求的前提下满足上述条件。PWM处于关闭状态时,Q9导通,建立可编程的电感电流回路。如果LED电流设置为6A,电感电流将由MAX16821调整在6A。输出再次导通时,电感电流对输出电容C8充电。C8的充电速率决定了LED电流的上升时间,基于这一点计算C8的取值。因为Q9的放电速度远快于C8,所以LED电流的下降时间远远小于1?s。

  电路波形

  

参考设计测试数据:LED电压(CH1)、LED电流(CH2)和OUTV电压(CH3)

 

  

参考设计测试数据:LED电压(CH1)、LED电流(CH2)和CLP电压(CH3)

 

  

LED电压(CH1)和LED电流(CH2)上升时间的测试数据

 

  

LED电压(CH1)和LED电流(CH2)下降时间的测试数据

 

  温度测量

  VIN:10V

  Iout:6A

  TA:25°C

  电路板温度:+50°C

  Q3、Q4和Q9温度:+52°C

  U1表面温度:+47.5C

  L1磁芯温度:+75°C (电流为5.8A时,L1温度高出环境温度40°C)

  上电顺序

  在VIN+和GND之间连接0至20V、5A电源(PS1)。

  在J6 (V_CONTROL)连接0至5V电源(PS2)。

  将额定值大于6A的LED通过尽可能短的连线连接到LED+和LED-,以降低引线电感。如果需要较长连线,请务必使用双绞线连接。

  J5、J8保持开路。

  打开PS2电源,输出1.1V。

  逐渐增大PS1电源输出,达到10V。LED被点亮,工作在1.5A连续电流。

  将一个幅度为3V至5V、30%占空比的信号连接至PWM引脚。LED电流将由PWM信号控制通、断。

  将PS2输出电压从1.1V调整到2.8V。在PWM处于导通期间,LED电流从1.5A上升到6A。

关键字:降压型  LED  驱动器设计 编辑:探路者 引用地址:降压型LED驱动器设计方案

上一篇:LED显示摇棒制作
下一篇:LED恒流驱动模组的选择原则

推荐阅读最新更新时间:2023-10-18 16:33

LED巨头齐聚厦门:LED是室内照明领域的“瑰宝”
  中广网厦门4月8日消息(记者马宁)今天,由厦门市人民政府主办,厦门市科技局承办的2011,中国(厦门)LED室内照明产业技术发展论坛在厦门国际会展中心观海厅隆重召开。国家科技部副部长曹健林、厦门市副市长叶重耕等政府领导,中科院半导体研究所所长李晋闽、台湾电电公会副理事长郑富雄、美国通用电气照明集团亚太总裁毕坚文、IEC国际标准项目组组长牟同升、国家半导体照明产业联盟副秘书长阮军、香港应科院副总裁吴恩柏等国内外LED业界的重量级嘉宾、龙头企业高层及优秀技术高工出席论坛。   会上,以李晋闽、牟同升为代表的多位业界嘉宾高度肯定了LED在室内照明领域的优势和美好发展前景。专家们认为:当今社会,人们越来越注重自身的健康,特
[电源管理]
基于AT89C51单片机的LED汉字显示屏设计方案
  O 引言   LED显示屏是利用发光二极管点阵模块或像素单元组成的平面式显示屏幕。它具有发光率高、使用寿命长、组态灵活、色彩丰富以及对室内外环境适应能力强等优点。并广泛的用于公交汽车、商店、体育场馆、车站、学校、银行、高速公路等公共场所的信息发布和广告宣传。LED显示屏发展较快,本文讲述了基于AT89C51单片机16×16LED汉字点阵滚动显示的基本原理、硬件组成与设计、程序编写与调试、Proteus软件仿真等基本环节和相关技术。   1 硬件电路组成及工作原理   本产品采用以AT89C51单片机为核心芯片的电路来实现,主要由AT89C51芯片、时钟电路、复位电路、列扫描驱动电路(74HCl54)、16×1
[单片机]
基于AT89C51单片机的<font color='red'>LED</font>汉字显示屏<font color='red'>设计</font>方案
使用MSP430 Launchpad开发板连接HC-05蓝牙模块控制LED
尽管在过去十年中引入了许多无线技术,但是蓝牙仍然是短距离无线通信中最受欢迎的技术。在嵌入式系统中,HC-05 / 06是最受欢迎的蓝牙模块。在本篇文章中,我们将学习将蓝牙模块HC-05与德州仪器(TI)的MSP430 Launchpad开发板连接。在此示例中,我们将使用蓝牙终端android应用程序从智能手机控制MSP430开发板上的LED灯。 所需的材料 ● TI-MSP430 Launchpad开发板 ● HC-05蓝牙模块 ● 应用商店中的Bluetooth Terminal App HC-05蓝牙模块 HC-05是一款易于使用的蓝牙模块。它使用串行通信协议(USART)在设备之间进行通信。此模块有两种操作模式
[单片机]
使用MSP430 Launchpad开发板连接HC-05蓝牙模块控制<font color='red'>LED</font>灯
MAX16936 220kHz至2.2MHz降压转换器
MAX16936是一个2.5A电流模式的降压转换器,集成高侧和低侧MOSFET的设计与一个外部肖特基二极管,以便提高效率。低侧MOSFET,使固定频率(FPWM)强制PWM模式操作在轻负载应用。该器件采用3.5V至36V的输入电压,同时使用在无负载静态电流仅28μA。开关频率从220kHz至2.2MHz的是电阻可编程,可同步至一个外部时钟。 MAX16936的输出电压为5V/3.3V固定或可调从1V到10V。 ,随着它能够运行在98%的占空比,在低电压瞬变的宽输入电压范围使MAX16936理想用于汽车和工业应用。 在轻载应用程序,的FSYNC逻辑输入允许,的MAX16936工作在跳脉冲模式下电流消耗减少或固定频率的FWM模式
[模拟电子]
MAX16936 220kHz至2.2MHz<font color='red'>降压</font><font color='red'>型</font>转换器
暴力拆解10-18W的LED驱动电源
偶得一个10-18W LED驱动电源,掂量掂量,手感有点沉。自我感觉还不错,拿出来拆看一下。
[电源管理]
暴力拆解10-18W的<font color='red'>LED</font>驱动电源
LED白光技术原理及发展趋势
  照明,从始至终与人类文明休戚相关。   1879年,爱迪生发明了白炽灯,把人类从火焰照明的时代带到了电光源的时代。一个多世纪以来,电光源照明技术得到了跨越式的发展,先后经历了以白炽灯、荧光灯和高强度气体放电灯(HID)为代表的三个重要阶段。如今,随着新一代 半导体 材料的出现和发光二极管( LED )封装技术的突破,以及LED 功率 等级的不断提高, LED光源 正在掀起电光源发展的第四场革命。    LED光源从根本上改变了光源发光机理,在提升照明质量和效用的同时,还可以改善环境、节约能源,具有很高的经济效益。目前, 白光LED 光源正在各个领域慢慢吞噬传统光源的市场。它的应用领域主要有:局部范围低 照度 照明、
[电源管理]
STM32程序编写基本流程(LED流水灯)
LED流水灯程序初始化流程 //1.定义结构体变量 GPIO_InitTypeDef GPIO_InitStructure; //2.开启GPIOC的外部时钟,不同的外设开启不同的时钟,IO口复用时两个时钟都要开启。stmf10x_rcc.h RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC,ENABLE); //3.设置要控制的GPIO管脚 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5; //4.设置管脚模式,推挽输出 GPIO_InitStructure.GPIO_Mode=GPIO_Mode_Out_
[单片机]
研诺推出新型4通道、电荷泵LED驱动器
电研诺逻辑科技有限公司今日宣布推出 AAT3104 和 AAT3195 两款新型 4 通道、电荷泵 LED 驱动器,它们在简化功能的手机和便携系统中用于更大屏幕 LCD 显示器。采用紧凑的 2 x 2.1mm 封装方式,这些器件在一个节省空间的占板内为设计者提供 16 步进、 32 步进或脉宽调制 (PWM) 电流控制。与竞争对手的解决方案相比, AAT3104 和 AAT3195 驱动器采用 1 倍 和 2 倍模式的高效电荷泵,减少外部组件数量达 25% 。为了在相邻的 LED 之间提供统一的亮度和完美匹配, AAT3104 提供用于共阳极结构的通用型电流吸入器,而 AAT3195 支持用于共阴极结构的共源。
[模拟电子]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved