LED灯具驱动电路原理分析

最新更新时间:2012-08-23来源: 电源网关键字:LED灯具  驱动电路  原理分析 手机看文章 扫描二维码
随时随地手机看文章
  •   图中F1为保险丝,L1,C11,L2,C12组成共模和差模EMI滤波器。C2,C3,D3,D4,D6构成一个逐流式电路实现功率因数校正功能。经过逐流式电路后,由T1,Q1,D1,C5构成的反激式开关电源电路完成隔离输出和变压功能,控制芯片U1实现反激式开关电源电路的开关控制功能。反激式开关电源电路具有电路结构简单,安全隔离,成本低的优点,特别适合小功率LED驱动电源的要求。而采用原边开关控制方式的反激式开关电源电路省去了副边输出恒流恒压检测电路和光耦器件,进一步降低了成本,提高了系统可靠性和性价比。

      图中,电阻R1,R2为芯片U1的启动电阻,连接到芯片的VCC脚,给芯片提供一定大小的启动电流。D5,R11,C9构成反激式开关电源电路的吸收电路,在开关Q1关断后,吸收开关上的尖峰电压。Na为辅助绕组,与D2,R6,C4构成芯片U1的供电回路。同时,辅助绕组电压经过电阻R10,R9分压,连接到芯片的FB脚,作为输出电压的检测和开路保护电路。

      R5A,R5B为开关Q1的电流检测电阻,经过R4后连接到芯片的CS脚,即U1的电流采样脚。芯片U1的1脚为输出驱动脚,经过稳压管Z1,由Q2,Q3组成图腾柱驱动电路放大驱动能量后连接到MOS管Q1的栅极,控制开关Q1的开通和关断。

  • 关键字:LED灯具  驱动电路  原理分析 编辑:探路者 引用地址:LED灯具驱动电路原理分析

    上一篇:PWM调光知识介绍
    下一篇:新型AC LED变换器拓扑电路设计

    推荐阅读最新更新时间:2023-10-17 15:01

    如何选择合适的LED灯具?照明设计师有绝招!
    照明 设备的选择是照明设计成果表现的重要因素之一,随着照明技术的革新 LED照明 发展迅猛,有的实验室一个月可以更新一代产品, LED 在照明上的主要表现:长寿命、体积小、热辐射小、节能环保、波段长等等。   但由于LED属于新型光源,运用在照明领域的时间还不长,生产研发技术还需不断提高和完善。而且目前国家没有完整的产业标准,这给LED灯具使用与推广带来了困扰,参差不齐的产品品质及价格也增加了照明设计师的工作量。如何选择合适的LED照明产品:    首先,从外外观评判   一个合格的产品必须是结构合理、表面处理细腻、各部件结构性和功能性匹配、有完整清晰的产品标贴、灯具尺寸符合使用空间的视觉尺度,包
    [电源管理]
    滤波电路原理分析
    滤波是信号处理中的一个重要概念。滤波分经典滤波和现代滤波。 经典滤波的概念,是根据富立叶分析和变换提出的一个工程概念。根据高等数学理论,任何一个满足一定条件的信号,都可以被看成是由无限个正弦波叠加而成。换句话说,就是工程信号是不同频率的正弦波线性叠加而成的,组成信号的不同频率的正弦波叫做信号的频率成分或叫做谐波成分。只允许一定频率范围内的信号成分正常通过,而阻止另一部分频率成分通过的电路,叫做经典滤波器或滤波电路。 实际上,任何一个电子系统都具有自己的频带宽度(对信号最高频率的限制),频率特性反映出了电子系统的这个基本特点。而滤波器,则是根据电路参数对电路频带宽度的影响而设计出来的工程应用电路。 用模拟电子电路对
    [模拟电子]
    滤波电路<font color='red'>原理</font><font color='red'>分析</font>
    漏电保护测试系统电路原理分析
    据不完全统计,我国每年因漏电而引起的触电事故、火灾造成数千人死亡和数十亿的经济损失,因此对可以防止漏电火灾及人身触电保护的漏电保护器的性能提出了更高的要求。本文介绍的漏电保护器动作特性自动测试系统,可测量漏电保护器的漏电动作电流值、分断时间和漏电不动作电流值,对提高漏电保护器工作的可靠性提供了主要技术参数,检测过程具有较高的自动化水平,可对在线运行与非在线运行的漏电保护器进行检测。 系统以LPC2132为核心,具有扩展测试电流的产生和调节模块、动作执行单元、电流检测电路以及键盘等外围设备。LPC2132是一个支持实时仿真和跟踪32位ARM7TDMI-S核的微控制器,1个10位8路A/D转换器,2个32位定时器/计数器,6路P
    [电源管理]
    漏电保护测试系统电路<font color='red'>原理</font><font color='red'>分析</font>
    TFT-OLED像素单元及驱动电路分析
    1 引言 有机电致发光器件(OLED)是将电能直接转换成光能的全固体器件,因其具有薄而轻、高对比度、快速响应、宽视角、宽工作温度范围等优点而引起人们的极大关注,被认为是新一代显示器件。要真正实现其大规模产业化,必须提高器件的发光效率和稳定性,设计有效的图像显示驱动电路。近来,随着研究的深入,OLED的发光效率和稳定性已达到某些应用的要求,而其专用的驱动电路技术还不是很成熟。目前,所有平板显示的驱动均采用矩阵驱动方式,由X和Y电极构成的矩阵显示屏。根据每个像素中引入和未引入开关元器件将矩阵显示分为有源矩阵(AM)显示和无源矩阵(PM)显示。 PM-OLED具有结构简单、成本低等优点,主要用于信息量低的简单显示中;AM-O
    [电源管理]
    TFT-OLED像素单元及<font color='red'>驱动电路</font><font color='red'>分析</font>
    一种新的LED灯具散热结构及原理分析
      发光二极管(Light Emi ttin Diode, LED )作为新一代固态光源,具有寿命长、高效节能、绿色环保等众多优点,被广泛地应用到 显示 !照明领域中随着科技发展,先进技术不断地应用于 半导体 生产中,以使LED的发 光效 率不断提升,成本持续下降。   LED的核心部分是 PN结 ,注人的电子与空穴在PN结复合时把 电能 直接转换为光能,但是并不是所有转换的光能都够发射到LED外,它会在PN结和环氧树脂/硅胶内部被吸收片转化热能这种热能是对灯具产生巨大副作用,如果不能有效散热,会使LED内部温度升高,温度越高,LED的发光效率越低,且LED的寿命越短,严重情况下,会导致LED晶片立刻失效,所以散热仍是 大功
    [电源管理]
    一种新的<font color='red'>LED灯具</font>散热结构及<font color='red'>原理</font><font color='red'>分析</font>
    不外接电阻的双输入采样保持放大器原理分析
    有些应用需要对一组模拟电压的采样,至少有两种传统方法可以满足这种要求。最常见的办法是将一个经典的模拟累加器与一个采样保持放大器级联。经典的模拟累加器是一个运放加上至少三只精密电阻。这些电阻的值应尽可能低,以避免影响累加器的带宽。但这些低值电阻会消耗功率。此外,累加器与采样保持放大器的结构也带来了另一种缺点,当两个输入电压幅度相近而极性相反时,就会显示出这种缺点。此时,即使输入电压幅度很高,得到的总和也很低,如果输入电压幅度相等则总和为零。对低电压的采样通常会使输出电压出现相对较大的误差,因为每个放大器都有一些动态误差,如残留的寄生电荷传入存储电容。 还有一种可能方法,即每通道使用一个放大器,用一个经典
    [模拟电子]
    不外接电阻的双输入采样保持放大器<font color='red'>原理</font><font color='red'>分析</font>
    线阵CCD图像传感器驱动电路的设计
    1 引言 电荷耦合器件(CCD.Charge(Couple Device)是20世纪60年代末期出现的新型半导体器件。目前随着CCD器件性能不断提高.在图像传感、尺寸测量及定位测控等领域的应用日益广泛.CCD应用的前端驱动电路成本价格昂贵,而且性能指标受到生产厂家技术和工艺水平的制约.给用户带来很大的不便。CCD驱动器有两种:一种是在脉冲作用下CCD器件输出模拟信号,经后端增益调整电路进行电压或功率放大再送给用户:另一种是在此基础上还包含将其模拟量按一定的输出格式进行数字化的部分,然后将数字信息传输给用户,通常的线阵CCD摄像机就指后者,外加机械扫描装置即可成像。所以根据不同应用领域和技术指标要求.选择不同型号的线阵CCD器件,设
    [传感技术]
    为LED驱动电路提供PWM亮度控制
      引言   典型应用中,通过串口向LED驱动器发送指令改变相应LED的寄存器值进行亮度调节。用于亮度控制的数据通常为4位至8位,对应于16至256个亮度等级;有些Maxim的LED驱动器的亮度控制则通过调整漏极开路LED端口的恒定吸入电流大小来实现。   该应用笔记讨论如何在LED恒流驱动器上加入PWM亮度调节,通过控制LED电源的通、断调节亮度。也可以通过刷新数据位仿真外部PWM亮度控制。内置PWM的LED驱动器也可以通过外部PWM实现亮度调节,只要PWM信号的外部时钟可以同步。   PWM仿真   按照一定周期向LED驱动器发送开/关控制信号,可以仿真PWM亮度调节的效果。因为LED数据接口的传
    [电源管理]
    为LED<font color='red'>驱动电路</font>提供PWM亮度控制
    小广播
    最新电源管理文章
    换一换 更多 相关热搜器件
    电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved