户外全彩LED显示屏亮度色度检测新方法

最新更新时间:2012-11-22来源: 维库电子关键字:LED  显示屏  亮度色度 手机看文章 扫描二维码
随时随地手机看文章

  LED( Light Emitting Diode, 发光二极管) 是当今世界发展最为快速的产业之一。LED 高亮度、低能耗、长寿命的特点使得LED 显示屏在户外平板显示领域优势明显。但是, LED间存在的光、电学特性差异通常会引起LED 显示屏亮度、色度不一致, 进而破坏显示屏的白平衡, 降低显示品质, 严重时还会造成"花屏"、"马赛克"等问题。在解决这一问题时, 以往的研究主要集中在单个LED 的光电学特性差异上面, 目的在于找到RGB( 红、绿、蓝) 三基色LED 合适的补偿曲线以修正其驱动控制参数来改善显示效果。这类检测和校正方案能较好解决“花屏” 、“马赛克"等严重问题。可是, 即便是同一基色、同一批次的LED 间也存在特性差异, 且LED 全彩显示屏包含的LED 像素点多, 在生产、制造的过程中都难免会出现各种问题, 将导致某个LED 像素点不亮, 或产生亮度、色度差。所以, 这类检测方案对单个LED 像素点的校正效果较差, 显示效果改善有限。作为补偿方案, 人工目测也只能检测出个别差异明显的LED 像素点, 且对检测人员的调试经验要求较高; 同时, LED 的高亮度也加大了检测人员的工作强度, 致使检测效率低。

  因此, 本文从户外全彩LED 显示屏整体着手, 运用数字图像处理的方法对显示屏上的每个LED 像素点进行快速检测,目的在于提高检测速度和准确度, 从而改善户外全彩LED 显示屏的显示效果。

  1  检测原理

  如图1 所示, 计算机通过图像采集/ 控制模块将CCD( Charge Coupled Devices, 电荷耦合器件) 传感器采集到的LED显示屏的显示图像进行处理。处理过程主要包括LED 像素点的定位和亮度、色度的快速检测两部分。

图1  检测系统组成原理图

图1  检测系统组成原理图

  1. 1 LED 像素点的定位

  要确定LED 像素点的位置, 首先要对采集的LED 显示屏图像进行二值化。由基于直方图的图像阈值分割方法可以知道: 图像由可以分离的具有不同灰度等级的一种或多种物体和背景组成。根据这一原理, 图像的直方图中将会呈现多个峰值, 每个峰值对应一种物体或是背景, 要将不同的物体分离开, 可以以谷值点为阈值来划分相邻峰值。

  由于LED 显示屏的点阵特性, 实际检测中发现采集的图像( 如图2( a) 其灰度直方图( 如图2( b) ) 双峰分布特征十分明显。对于这类情况, 采用式( 1) 的最大方差阈值法来自动选择分割阈值, 不仅效果好, 而且速度快。

  式中T 表示分割阈值, w 0、w 1 分别表示灰度值小于T、大于T 的像素点在图像中所占的比重, 、“0”、“1” 分别表示图像整体的灰度平均值、灰度值小于T 的那部分图像的灰度平均值、灰度值大于T 的那部分图像的灰度平均值。

  利用式( 1) 计算出的阈值T 对图2( a) 的灰度图像进行二值化处理后得到图2( c) , 再对图2( c) 分别进行水平和垂直投影, 就可以计算出LED 像素点在显示屏上的位置。

图2  定位处理结果

2( a) 采集的蓝色图像 2( b) 灰度直方图 2( c) 二值化图像

图2  定位处理结果

户外全彩LED显示屏亮度色度检测新方法(2/3)

文章出处: 发布时间: 2011/11/04 | 1737 次阅读 | 4次推荐 | 0条留言

业界领先的TEMPO评估服务 高分段能力,高性能贴片保险丝 专为OEM设计师和工程师而设计的产品 Samtec连接器 完整的信号来源 Advertisement每天新产品 时刻新体验 完整的15A开关模式电源 全球认证证高性能贴片片保险丝 FRAM 铁铁电非易失性性随机存取存储储器

  1. 2 LED 像素点亮度、色度的快速检测

  借鉴成功用于PAL( Phase Alternating Line, 逐行倒相制) 制式的电视系统中的YUV 颜色模型( Y 表示亮度, U 和V 是构成彩色的两个分量) , 笔者将图像中采用的RGB 颜色模型转换成式( 2) 的颜色模型, 可以方便、快捷地计算出各像素点的相对亮度值。

  根据色度学中的加色法原理?1%, 户外全彩LED 显示屏由RGB 三基色LED 构成显示屏上的每个像素点, 通过控制每个像素点中的某基色LED 的发光强度, 就可以配出各种颜色,在显示屏上显示出丰富多彩的彩色图像。在CIE( 国际照明委员会) rg 色度图中, 色度坐标反映的是三基色各自在三刺激值总量中的相对比例, 一组色度坐标表示了色相相同和饱和度相同而亮度不同的那些颜色的共同特征。

  而LED 显示屏上的每个像素点总是能在待测图像中找到对应的区域。因此, 可通过其对应区域内图像数据中的RGB 值来确定该像素点的色度, 其计算公式如式( 3)。

  设测得的LED 像素点的亮度值为Y1, 色度坐标为( r 1,g1) , 分析Y1、( ri , g1) 的离散性, 就能确定LED 显示屏上亮度和色度不一致的LED 像素点。

  为验证检测方法的有效性, 笔者用Ava Spec- 2048 微型光谱仪对同一户外全彩LED 显示屏的单元模块进行了亮度和色度的对比测试。为减小计算量和方便调试, 笔者采用了CIE rg 色度坐标系, 这与光谱仪采用的国际通用的CIE xy 色度坐标系不同。因此, 测试时要对色度坐标进行转换, 如式( 4) 所示。

  2  处理结果及分析

  笔者利用CCD 图像传感器采集图像, 对三合一表贴户外全彩LED 显示屏的单元模块中的LED 像素点进行了算法测试。

  以蓝色为例, 图2( a) 为CCD 图像传感器采集的三合一表贴单元模块显示的蓝色图像。为更好地验证该检测方法的有效性, 笔者对该LED 显示单元模块的某些像素点进行了遮蔽处理, 形成了图2( a) 中的黑色部分。

图3 麦克亚当颜色宽容量椭圆图

图3 麦克亚当颜色宽容量椭圆图

  由于LED 是自发光体, 并且发光强度在一定范围内与提供给它的驱动电流成正比, 因此在驱动电路的设计、制造和调试过程中, 通过合理控制驱动电流, 可以尽量减小亮度差,以平均值作为标准值来计算, 应小于15%至20%?1- 2%.因此, 为方便后续的亮度校正, 实验对偏离整体亮度平均值5%以上的LED 像素点进行定位和统计, 以求将这些偏离较大的像素点的亮度差值控制在10%以内。在进行色度检测时, 本文参照麦克亚当( D. L. MacAdam) 对颜色宽容度进行量化的方法( 如图3) , 对各LED 像素点的色度坐标进行了统计, 求出这些色度坐标的几何中心, 并记录下与该几何中心的欧式距离大于d0 的LED 像素点( 不同颜色d0 取值不同) , 如式(5)。

  表1 为检测结果( 以蓝色为例) , 其中亮度值Y1 为相对亮度, 正比于最大亮度255; 色度坐标为( r 1, g1)。

表1  检测结果统计表(蓝色)

表1  检测结果统计表(蓝色)

  笔者用AvaSpec- 2048 微型光谱仪对同一单元模块进行了对比测试, 其测试结果如表2 所示。对比可知, 本文采用的检测方法是有效、可行的, 且检测速度快、精度高。

表2  AvaSpec- 2048 微型光谱仪测试结果(蓝色)

表2  AvaSpec- 2048 微型光谱仪测试结果(蓝色)

  3  结论

  本文运用CCD 图像传感器及数字图像处理技术对户外全彩LED 显示屏的亮度、色度均匀性评价提出了一种新的快速检测方法, 较好地保证了显示屏上各LED 像素点显示效果的一致性, 为后续的亮度、色度校正工作提供了定量调试的参考依据, 能大大提高户外全彩LED 显示屏的检测效率和显示质量。下一步将继续开展环境光对亮度、色度检测的影响及克服方法, 以及亮度、色度自动校正驱动电路的研究, 最后实现对户外全彩显示屏上每个LED 像素点的亮度、色度值的精确检测和校正。

关键字:LED  显示屏  亮度色度 编辑:探路者 引用地址:户外全彩LED显示屏亮度色度检测新方法

上一篇:基于FPGA+MCU的大型LED显示屏系统设计
下一篇:基于RGB Gamma曲线LED显示图像的色散校正技术

推荐阅读最新更新时间:2023-10-17 15:08

Molex 和思科数字化天花板社区将 LED 照明推向拉斯维加斯
Molex 作为思科解决方案技术的集成商以及思科 数字化天花板合作伙伴社区的成员,于本月早些时候参加了在拉斯维加斯举办的 Cisco Live! 大会。数字化天花板计划致力于拓宽智能 LED 照明解决方案的范围,而 Molex 在这一领域作为解决方案的提供商,已经开发出了 Transcend 网络互联 LED 照明系统。 Molex 在拉斯维加斯的此次展会上展示了 Transcend 网络互联 LED 照明系统。此外,Molex 在此次活动上还展出了全系列的基础设施部署服务,以及用于 IT 和楼宇系统的项目控制方法,例如 Transcend 等。 Transcend 系统是数字化天花板的一个整体组成部分,后
[电源管理]
JEDEC发布五项国际LED热测试标准
JEDEC即固态技术协会,是微 电子 产业的领导标准机构。在过去50余年的时间里,JEDEC所制定的标准为全行业所接受和采纳。作为一个全球性组织,JEDEC的会员构成是跨国性的。JEDEC不隶属于任何一个国家或政府实体。 JEDEC最近出版了第一个国际组件级的高亮度/功率 LED 测试标准,它定义了LED热测试数据表上的数据、测试环境和程序标准。JEDECJC-15委员会联合LED产业领导者制定了高功率LED元件的温度性能测试标准,在新的JESD51-5X系列标准中包含JESD51-5,JESD51-50,JESD51-51,JESD51-52和JESD51-53均符合国际照明委员会(CIE)现有的LED测量推荐规范。
[电源管理]
美总统奥巴马参观科锐工厂并给予重要指示
    美国总统奥巴马一行于美国当地时间6月13日走访了全球业界领先的LED照明制造商科锐公司(Nasdaq:CREE),并在科锐首席执行官 Chuck Swoboda 的陪同下参观了科锐位于美国北卡罗来纳州达勒姆的制造工厂。访问期间,奥巴马与科锐员工进行了亲切的交谈,并对科锐一直致力于推动全球LED绿色照明给予了高度的称赞。     奥巴马总统表示:“这家25 年前由北卡罗来纳州的工科学生创建的小公司如今已经发展成为一家全球性企业。作为LED 照明先锋的科锐正在引领清洁能源变革,科锐的未来必定更加辉煌。”     中国是科锐非常重要的市场,科锐公司秉承“科技创新,锐意共进”的理念,以“科锐芯 中国情”的发展战略与政府机构
[电源管理]
LED/LCD显示原理
LED译码器采用标准数字电平输出,使LED显示器的七段发光二极管分别工作于导通或截止状态,从而使LLD显示相应的数字。而LCD显示器是利用液晶的动态散射效应来显示数字的,当没有外加电场时,液晶分子按一定方向整齐排列,射人的光线被反射电极反射回来,从而使液晶呈现白色;当电极上加人电压后,液晶电离正离子在电场的作用下运动而打乱液晶分子的规则排列,射入的光线不能正常反射回来,从而使液晶呈现暗色。液晶显示器两极不能施加直流电压,通常要求在两个电极上加50一100 Hz的交变信号,此信号可由两个同频反相的周期性矩形脉冲信号加在LCD电极的两端组成。当其正面电极和公共电极的脉冲信号同频反相时,液晶两极电压为方波信号,液晶工作呈现暗色;而当两极
[模拟电子]
<font color='red'>LED</font>/LCD显示原理
基于新型基板封装技术的风光互补LED照明控制器设计
1 引言 目前,风光互补系统发展较快,风光互补控制器种类较多,但真正能很好的达到经济性.可靠性和安全性的系统还不多,其主要的原因之一是没有一个良好的控制系统.风光互补照明控制器工作在户外环境中,是风光互补系统的核心,对控制器的技术要求较高,在满足使用功能的前提下还要做到控制智能化.可靠化.寿命长.稳定性好. 常规的光伏控制器在蓄电池充满以后,会启动开路保护模式,断开太阳能电池板与蓄电池的充电回路,达到保护蓄电池的作用.但是对风光互补照明系统而言,在蓄电池过充时风机是不能直接进行开路保护,一般都是采用卸荷器对风机进行刹车. 本文通过深入研究风光互补照明系统工程应用存在的问题,结合多年的实践经验,提出了一种基于新型基板封装的风光互补L
[电源管理]
基于新型基板封装技术的风光互补<font color='red'>LED</font>照明控制器设计
全球厂商LED恒流IC盘点
   LED恒流驱动简介   由于LED是特性敏感的半导体器件,又具有负温度特性,因而在应用过程中需要对其进行稳定工作状态和保护,从而产生了驱动的概念。   LED驱动电源把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,LED电源核心元件包括开关控制器、电感器、开关元器件(MOSfet)、反馈电阻、输入滤波器件、输出滤波器件等等。根据不同场合要求、还要有输入过压保护电路、输入欠压保护电路,LED开路保护、过流保护等电路。   LED的恒流驱动   用LED作为显示器或其他照明设备或背光源时,需要对其进行恒流驱动,主要原因是:   1. 避免驱动电流超出最大额定值,影响其可靠性。
[电源管理]
全球厂商<font color='red'>LED</font>恒流IC盘点
分析LED被静电击穿的现象及原理
LED内部的PN结在应用到电子产品的制造、组装筛选、测试、包装、储运及安装使用等环节,难免不受静电感应影响而产生感应电荷。 若电荷得不到及时释放,将在两个电极上形成的较高电位差,当电荷能量达到LED的承受极限值(这个就是LED抗静电指标值啦),电荷将会在瞬间释放。 在极短的瞬间(纳秒级)对LED芯片的两个电极之间进行放电,瞬间将在两个电极之间(阻值最小的地方,往往是电极周围)的导电层、发光层等芯片内部物质产生局部的高温,温度高达1400℃,这种极端高温下将两电极之间的材料层熔融,熔成一个小洞,从而造成各类漏电、死灯、变暗的异常现象。 不同企业、不同工艺、不同衬底材质、不同设计制造的LED芯片
[电源管理]
安森美半导体分享LED照明设计基础知识
发光二极管(LED)继在中小尺寸屏幕的便携产品背光等应用获大量采用后,随着它发光性能的进一步提升及成本的优化,近年来已迈入通用照明领域,如建筑物照明、街道照明、景观照明、标识牌、信号灯、以及住宅内的照明等,应用可谓方兴未艾。 另一方面,LED照明设计也给包括中国工程师在内的工程社群带来了挑战,这不仅因为LED照明的应用范围非常广泛,应用的功率等级、可以采用的驱动电源种类及电源拓扑结构等,也各不相同。工程师们迫切需要系统地学习及了解更多有关LED照明设计的基础知识。有鉴于此,安森美半导体的产品应用总监Bernie Weir先生近期专门撰写相关培训资料,为工程师们传授相关的设计基础知识,内容涉及LED驱动器的通用要求
[电源管理]
安森美半导体分享<font color='red'>LED</font>照明设计基础知识
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved