基于FPGA的LED体三维显示方案研究

最新更新时间:2012-11-22来源: 维库电子关键字:LED  三维显示 手机看文章 扫描二维码
随时随地手机看文章

  引 言

  众所周知, 视觉是人类感知世界的最重要的方式, 而现实生活中的所有物质形态都是以三维空间而客观存在。三维显示能真正地再现客观世界的立体空间, 提供更符合人们观察习惯的交流方式, 有助于人们在综合运用各种深度暗示之后, 通过大脑的计算感知而获得真实、丰富、可靠的视觉体验, 对社会的发展以及在科技、经济等方面的发展具有重要的作用。

  目前, 三维显示大致可以分为四类: 体视三维显示、全息三维显示、透视三维显示和体三维显示 ,其显示的原理和特点如表1 所示。

表1 各类三维显示原理及特点

各类三维显示原理及特点

  本文通过旋转24×16 二维LED 阵列实现了具有69120个体像素, 空间尺寸为Φ9414 mm ×6618mm 柱体内的三维显示, 文中论述了系统的整体结构、显示原理及其各组成部分的实现方法。最后并以显示“茶壶”为例, 对此体三维显示系统进行了分析和讨论。

  1 LED 体三维显示系统设计

  1.1 整体方案

  由于人眼具有视觉暂留的特性, 即人类视觉对亮度改变的跟踪会由于意识处理延迟而滞后。基于此特性, 利用电机驱动置于对称转轴两侧的发光二极管阵列, 使之高速旋转, 周期性地扫出一个柱体空间。同时, 寻址驱动控制电路根据需要调制不同时刻LED阵列的发光状态, 这样通过快速显示一幅幅二维图像截面序列来实现三维显示。由于人眼视觉暂留时间约为50~100ms, 当电机转速超过10r/s时, 人便不会有闪烁的感觉, 而是看到三维的立体图像。根据此原理可设计如图1 所示的LED体三维显示系统。

LED 体三维显示系统

  利用计算机生成三维数据再通过数据传输电路把数据传输到旋转驱动板上面的存储器中, 并且由角度编码器来测试电机的旋转角度并把信号送给FPGA , 然后由FPGA 根据采集的角度编码器输出信号驱动LED 屏显示并按时刷新LED 显示屏。同时, 整个旋转驱动板在电机的驱动下快速的旋转, 快速显示一幅幅二维截面图像来实现三维显示。

  1.2 三维数据生成

  利用Matlab 软件的强大功能, 首先可以通过im read ()、im f info ()、m eshgrid ()、m eshc () 和su rf ()等语句来实现具有灰度值的三维图像, 假设获得的三维图像角坐标为P (X0, Y0, Z0)。

  令LED阵列旋转所得的圆柱空间中LED 灯的柱坐标为F ( r, H, z ) , 根据柱坐标与直角坐标的转换关系, 求得空间LED灯的三维直角坐标E (X 1, Y 1,Z 1) 可表示如下:

  其中r, H, z 均为整数, 且有: - 12< r≤12, 0< H≤360, 0< z ≤16。

  最后, 令D(X2, Y2, Z2) = P(X0, Y0, Z0) ∩E (X1, Y1, Z1 ) 求出该显示的L ED 灯的三维直角坐标, 以此作为三维数据的信息源。

  从Matlab 610 版本开始,Mathworks 公司在软件中增加了设备控制箱( Instrument control toolbox ) , 提供对RS2232/RS2485 通信标准的串口通信的正式支持。因此本系统使用该工具箱的serial 类及fopen、fw rite 等函数, 通过RS2232 串口并利用数据传输电路把获得的三维图像数据传输到LED 驱动电路板上。

  1.3 数据传输电路

  三维图像数据利用设备控制箱通过RS2232 串口后, 再利用红外编解码技术把数据传到旋转的LED驱动板上, 其整个数据传输的通讯结构图如图2 所示。

数据传输电路

  在单片机串口模块中选用电平转换芯片MAX232 芯片实现TTL 电平与RS2232 电平的双向转换, 从而把三维图像数据传送到单片机的串行接收端口RXD 上, 然后单片机再通过其发送端口TXD把数据送出。图中的调制与红外发射模块通过由N E555 芯片构成的多谐振荡电路调制成38 kHz 的载波信号, 最后利用红外发射管TSAL6238 以光脉冲的形式向外发送。为了保证红外接收数据的准确性,N E555 产生的振荡频率要尽可能接近38 kHz,所以在选择电阻电容时要选用精密的元件并保证电源电压的稳定性。

  数据传输电路中的红外接收解调模块选择Vishay 公司的TSOP1738, 其内部电路功能已包括把接收到的载波频率为38 kHz 的脉冲调制红外光信号转化为电信号, 并由前放大器和自动增益控制电路进行放大处理。然后, 通过带通滤波器进行滤波, 滤波后的信号由解调电路进行解调。最后, 由输出级电路进行反向放大输出。

  所以, 选用此红外接收模块只要把其数据输出直接送到FPGA 处理即可。经实验测定, 利用此红外传输电路传输数据, 速率最高可达1 kB/ s。

  1.4 角度编码器与电机模块电路

  本系统立体显示是通过快速显示旋转空间中的一系列二维截面来实现的, 把LED 屏旋转一周分成180 个截面, 即每转2°要刷新一次显示屏。为了准确刷新显示屏, 本系统选用角度编码器来识别显示屏转过的角度, 角度编码器通过测试电机旋转发出脉冲可识别电机的旋转角度。本系统选用的角度编码器型号为ZSP38062022G2360B25224E。此编码器旋转一周可输出360 个脉冲信号。这样电机每转2°, 角度编码器便可发出2 个脉冲信号,LED 显示屏控制系统通过计数采集的角度编码器输出脉冲数来控制刷新LED 屏。

  同时, 利用角度编码器的输出脉冲再通过单片机的处理可测出电机的旋转速度, 并可送到数码管显示。此外, 单片机可对测得的电机速度进行判断,判断其是否超出一定的范围, 如超出范围可通知由单片机控制的报警电路报警。其电机模块电路图如图3 所示。

电机模块电路

 

  电路中所用的电机为无源电机, 所以需要电机的驱动电路, 考虑电机在加负载时速度会减慢, 设计电机的速度可调, 其调节范围为0~ 4 200 r/m in。电路中电机与角度编码器套在一起, 其转速v ( r/s ) 与角度编码器的输出脉冲频率f (Hz) 具有如下关系:

  v = f/360 (2)

  通过此对应关系利用单片机可测出电机的旋转速度并可送到数码管显示。同时利用设计的报警器可达到对电机旋转速度的监控。

  1.5 LED 寻址驱动电路

  LED 寻址驱动控制电路主要是利用FPGA 芯片EP1C3 来控制LED的专门驱动芯片BHL2000, 并且EP1C3 根据采集的角度编码器的输出脉冲数按时读取存储器中的三维图像数据, 然后传送给BHL 2000, 从而来驱动LED 屏的列显示。同时, FP2GA 又将行扫描信号输出经后级放大来驱动L ED 屏的行显示, 其具体的原理框图如图4 所示。

LED 寻址驱动控制电路

  由于LED屏在旋转的过程中会造成亮度损失,所以FPGA 的行扫描信号输出需经过74HC245 和UDN2981 的放大, 这样行信号输出最大电流可达到500 mA。此外,BHL 2000 属于灌电流型器件且每个数据输出端电流可达到80 mA , 可直接驱动L ED 显示。驱动电路中的存储器选择STC62WV 5128, 其容量为512 k×8 b it, 而本系统一幅三维图像的数据量为6715 k×8 b it, 所以选择STC62WV 5128 是足够的。

  值得说明的是, EP1C3 对BHL 2000 的写数据是在BHL 2000 写入时钟WR 的驱动下, 数据从D in02D in7 输入, 在内部移位寄存器中串行移位16 次后,由级联口SHO02SHO7移出。同时BHL 2000 行、场控制信号HS、VS确定数据在存储器中的存储位置, 最多可存8×16×32 个字节。此外,BHL 2000 的输出行、场控制信号HCL K 和CLR 确定取数位置, 在读出时钟CLK控制下进行灰度调制, 输出脉宽信号O02O15, 从而驱动LED显示屏。

  2 软件设计

  设计的主要原理是在逐行扫描信号的驱动下,在每次行扫描信号来临时, 送出8 位的列数据, 电机每旋转2°的时间内, FPGA 一直扫描同一幅切面图像数据, 然后每旋转两度后就刷新扫描另一幅切面图像数据, 值得注意的是, 每一行扫描信号后面要加一个消隐信号, 即再显示下一行数据时要把前一行L ED 灯关掉, 否则会产生串扰, 图5 所示即为加消隐信号后的16 个行扫描信号。

行扫描信号仿真波形图

  3 分析与讨论

  本文根据人眼所具有的视觉暂留特性及L ED高速发光特性实现了一套基于旋转24×16 二维LED 屏, 具有69120个体像素, 空间尺寸为Φ9414mm ×6618 mm 的体三维显示系统。从对此系统中的三维数据获取、数据的无线传输、电机旋转角度值的获取以及L ED 屏的寻址驱动电路等模块的分析和讨论来看, 本系统具有可行性高、技术实现容易、系统简单和便于控制等特点。图6 所示为根据本系统显示的“茶壶”, 从图中可以看出显示的三维效果。

“茶壶”状三维图形

  当然, 从图中也可以看出本系统的LED 阵列尺寸还比较小,LED 灯排列还不够密, 其横向和纵向间距为412 mm。此外, 本系统也存在数据传输速度限制、不能实时显示以及亮度均匀性控制等问题, 但这同时也为以后实现更高质量的三维显示提供了努力的方向。体三维显示也将在包括科学可视化、虚拟现实、数字娱乐、空中交通控制、核磁共振成像、三维流体分析在内的很多领域有着广泛的应用前景。

关键字:LED  三维显示 编辑:探路者 引用地址:基于FPGA的LED体三维显示方案研究

上一篇:基于RGB Gamma曲线LED显示图像的色散校正技术
下一篇:基于ARM S3C44B0X 的LED显示屏设计

推荐阅读最新更新时间:2023-10-17 15:08

基于S3C2440的LED背光源节电系统设计方案
引言 节能环保技术是当前世界所关注的焦点,在液晶显示模组中,背光源的功耗最高可占总功耗的50%以上。尤其在10in 以下显示产品如手机、PDA、MP3 等便携式设备中,基本采用电池供电,功耗问题尤为突出。为有效降低液晶显示器背光源的亮度,以达到节电目的,本文在ARM 开发平台上实现了一种基于直方图变换的背光源调光方法,实验证明,本文提出的方法在失真度为5%的情况下可实现背光节电约35%. 1 背光源调光方案 以TFT 液晶面板结构为例,包括背光、偏光片、液晶阵列、彩色滤光片等部分,人眼所感知的显示图像为上述各部分的综合效果。假设背光亮度归一化后设为b(为 区间实数),0 对应于背光关闭情况,1 对应于背光发光亮度最大情
[电源管理]
基于S3C2440的<font color='red'>LED</font>背光源节电系统设计方案
苹果MacBook Air和iPad Pro全系采用mini-LED,2022年发布
据DigiTimes报道,苹果的下一代MacBook Air将配备mini-LED屏幕,并将于2022年推出。 DigiTimes此前曾表示,MacBook Air未来将配备mini-LED屏幕,但该媒体已经再次强调了这一说法,其援引行业消息人士的话称,苹果可能为配备13.3英寸显示屏的“MacBook Air”采用mini-LED技术,该设备将于 2022年推出。 预计明年新的mini-LED型号将使MacBook Air的出货量增加约 200 万台,其还补充说,明年11英寸iPad Pro也有望采用mini-LED屏幕。 此前国外爆料者表示,新版MacBook Air外形将会大改,相比目前的楔形造型更加美观,笔记本前后厚度
[手机便携]
使用不同封装技术 强化LED元件的应用优势
led 具备环保、寿命长、体积小、高指向性、固态形式不易损坏...等优点,已逐渐取代传统钨丝灯(白炽灯)、 CCFL 荧光灯,但在因应不同应用需求时,仍有发 光效 率、光型、散热与成本等诸多问题,为使产品更能满足需求,必须从LED组件端的封装形式着手改善...   LED因为材料特性与发光原理异于传统光源,因此具备多项使用上的优势,只是用于取代一般日常应用的光源时,LED固态的发光组件仍需要多重设计与改善,才能在发光效率、 演色性 、照明光型、 电源 效能等方面获得强化,以通过照明应用市场的考验。   在通用照明(General Lighting)市场中,LED 固态照明 想要加速普及,必须在短期内让组件成本、制作
[电源管理]
使用不同封装技术 强化<font color='red'>LED</font>元件的应用优势
LED线性驱动和开关型驱动
  驱动方案一般来说有两种: 线性驱动和开关型驱动。   线性驱动应用是一种最为简单和最为直接的驱动应用方式。在照明级白光LED应用中,虽然存在着效率低、调节性差等问题,但是由于其电路简单、体积小巧,能满足一些特定的场合应用较多。   开关型驱动可以获得良好的电流控制精度和较高的总体效率,应用方式主要分为降压式和升压式两大类。降压式开关驱动是针对电源电压高于led的端电压或者是多个LED采用并联驱动情况下的应用。升压式开关驱动是针对电源电压低于LED的端电压或者是多个LED采用串联驱动情况下的应用。   一般认为,隔离型驱动安全但效率较低,非隔离型驱动效率较高,应按实际使用的要求来选。  目前设计一般的基本LED驱
[电源管理]
四种LED路灯的电源设计方案
LED路灯是LED照明中一个很重要应用。在节能省电的前提下,LED路灯取代传统路灯的趋势越来越明显。市面上,LED路灯电源的设计有很多种。早期的设计比较重视低成本的追求;到近期,共识渐渐形成,高效率及高可靠性才是最重要的。 本文主要是针对几种不同LED路灯的应用,提出了适合的架构,并对其优缺点进行分析,以便让读者能根据具体状况和设计的路灯种类,找到最合适的方案。 方案一:直接AC输入,对6串LED分别做恒流控制 在本文介绍的几种方案之中,这一种方案应该是目前效率最高、电路成本最低的方案(图1)。直接用光电耦合器对初级侧电路进行回溯控制,调节输出电压。相对于其它传统方案,该方案的开关损耗少。将CS的电压固定在0.25V,对6串LED
[电源管理]
四种<font color='red'>LED</font>路灯的电源设计方案
Atmel MSL2166 16路白光和RGB LED驱动解决方案
AtmEL公司的MSL2164/MSL2166是小型大功率LED串驱动器,每串电流为350mA,电流匹配优于±0.8%,具有12位PWM串调光,正向,中心,反向和逆向PWM模式,快速20MHz SPI支持多达8个器件/总线,8位自适应功率修正最大化效率,主要用在电视和台式监视器,医疗和工业设备,汽车音/视频显示,建筑物照明等.本文介绍了MSL2164/MSL2166主要特性,方框图和典型应用电路图. 16-string, White and RGB LED Drivers with Adaptive Configuration, EEPROM, and SPI/I2C/SMBus Serial Interface Th
[电源管理]
Atmel MSL2166 16路白光和RGB <font color='red'>LED</font>驱动解决方案
亚洲国家LED产业发展状况大调查
从全球LED产业生产基地版图的分布可以看到,欧美国家一直以来占市场占有率约为20%左右,以高阶市场产品为主。2010年日本、台湾、韩国与中国大陆总市占率则已高达81.3%,亚洲为LED主要生产基地,预估未来在韩国与中国大陆持续成长的趋势下,亚洲仍会居全球LED产业之领导地位。2010年在全球经济复苏及照明与中大尺寸背光模块等新应用市场带动下,全球发光二极管(LED)市场规模约达107亿美元,LED在终端产品的需求带动下,仍会维持成长态势,节能减碳议题备受全球重视,LED外置电源照明渗透率可望持续成长。另外,新兴应用如平板装置、微投影、汽车照明、大型广告牌应用、医疗照明、农业应用等,小众且利基型市场值得期待。 亚洲国家中以韩国成
[电源管理]
通用照明市场中的高亮度LED驱动要求与挑战
近年来,随着绿色环保团体不断扩大节能环保界线,各个规范标准组织不断发布新的能效标准,同时,终端产品不断向更高集成度和更小尺寸的方向发展,降低能源消耗、提高能源使用效率已经成为全球众多国家的政府、行业组织、半导体公司、电子产品制造商及消费者所共同关注的一项焦点。 如果我们审视各个应用领域的电能消耗,根据预计,全球大约有 19% 的电能是用于照明。这部分的电能消耗比例相当可观,有鉴于此,业界不断致力于寻求面向通用照明市场的更加节能高效的照明解决方案。 通用照明市场的不同光源对比 从具体应用来看,通用照明市场涵盖的领域非常广泛,包括建筑物照明、标志、景观
[模拟电子]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved