四种LED路灯电源设计对比分析

最新更新时间:2013-06-29来源: 中国LED网关键字:LED路灯  电源设计 手机看文章 扫描二维码
随时随地手机看文章

LED路灯是LED照明中一个很重要应用。在节能省电的前提下,LED路灯取代传统路灯的趋势越来越明显。市面上,LED路灯电源的设计有很多种。早期的设计比较重视低成本的追求;到近期,共识渐渐形成,高效率及高可靠性才是最重要的。

立锜科技近年来推出了一系列LED照明的驱动IC,也一直关注LED路灯的发展。本文主要是针对几种不同LED路灯的应用,提出了适合的架构,并对其优缺点进行分析,以便让读者能根据具体状况和设计的路灯种类,找到最合适的方案。

方案一:直接AC输入,对6串 LED分别做恒流控制

在本文介绍的几种方案之中,这一种方案应该是目前效率最高、电路成本最低的方案(图1)。直接用光电耦合器对初级侧电路进行回溯控制,调节输出电压。相对于其它传统方案,该方案的开关损耗少。将CS的电压固定在0.25V,对6串LED分别做恒流控制。IC会侦测FB的位置,将电压最低那串LED固定在0.5V。此时由于各串LED的Vf值的总和不同,产生的压降会落在MOS管上,导致一些损耗。如果是一般对Vf分BIN筛选过后的LED,损耗应该可以控制在2%以内,少于一般的开关损耗。

LED路灯的四种电源设计方案

该方案的优点是效率高、成本低,缺点是AC输入、需要较多的研发成本。该方案适用于可以用AC直接输入的路灯。

方案二:DC或电池输入,对6串LED分别做恒流控制

它采用多串的升压结构设计,LED驱动的方式与前一种类似,差别在于由AC输入改为DC或是由电池输入(图2)。低压侧传感的设计只要选择适当的MOS管,LED可以串相当多的颗数。相对于AC输入的方案,其设计较为简单。但由于多了一次升压的开关,效率相对较低。

LED路灯的四种电源设计方案

该方案的优点是设计简单、电路成本低,缺点是效率较低。它适合太阳能电池或通过适配器输入的路灯。

方案三:单串降压结构

有些厂商仍喜欢用单串的设计,优点是维修容易,而且可以做模块化设计。不同功率的路灯可以使用相同的灯条,只要更换面板,插上不同数目的灯条,就可以组合出各种不同功率的路灯。但它的缺点是每一串都需要独立的电源模块,成本较高,而降压的结构会让LED的数目受限于IC的耐压。在图3所示的例子中,LED最多串到 14颗,如果要设计20W的灯条,就需要使用700mA的LED。为了使效率达到最高,必需针对LED的数目来调节输入电压,也就是适配器的输出电压。以10颗LED为例,如果要达到最高效率,就必须把输入电压调到约42V左右。

LED路灯的四种电源设计方案

该方案的优点是降压结构效率较高、单串设计、配置较为灵活,缺点是电路成本较高、LED串联数目受限于IC耐压。它适合通过适配器输入的路灯

方案四:单串升压结构 RT8480

同样的单串设计,升压结构(图4)会较降压结构的效率低,但是LED串联的数目不再受限于IC的耐压,而是由MOS来决定,因而可以串联较多的LED。由于大多数的太阳能电池的输出电压都不高,因此太阳能路灯较适合使用升压结构。而选用电流模式的恒流设计,可以让输出电流较不受输入电压变化的影响,在电池满载以及快没电时,都能让路灯维持相同的亮度。

LED路灯的四种电源设计方案

该方案的优点是串联LED数目不受IC耐压限制,缺点是电路成本较高,效率较降压结构稍低。它适合太阳能路灯。

下表对LED路灯四种电源设计方案的优势进行了比较并排序。

LED路灯的四种电源设计方案

关键字:LED路灯  电源设计 编辑:探路者 引用地址:四种LED路灯电源设计对比分析

上一篇:LED照明驱动芯片的选用技巧
下一篇:基于单片机的LED室内照明控制系统

推荐阅读最新更新时间:2023-10-17 15:46

高性能LED路灯照明系统重要技术及规格概述
  节能环保当道,适逢led照明产业兴起,大量科技公司投入此新兴产业。由于LED照明信赖性能标准未能实时订定规范,导致大量产品无法通过考验,严重光衰收场,实因无设计理论性研究为检视支柱,因而造成使用者疑虑,推迟了产业发展时机。谨此浅谈高性能LED路灯多项组件至灯具系统各项重要技术指针规格数据论述供参考。   1.)LED芯片&封装组件发光效率关键技术指针:   LED芯片&封装组件关键技术,美、日厂商均已量产突破发光效率100~120 lm/W以上,超越传统最高效率的HID光源(发光效率90~110 lm/W),灯具照度提升至≧60 lm/W,满足道路照明寿命长光衰低符合国际标准平均照度达25~40Lux规格与节能50~
[电源管理]
采用PWM调光技术的150W集成式PFC + LLC LED路灯电源
世界各地正在加快转用LED路灯。 然而,LED路灯的维护成本相对较高,与传统方案相比,只要出现一次过早失效,其成本优势就不复存在。 大功率LED驱动器的可靠性和高效率是这些项目取得成功的关键因素。 Power Integrations新发布的设计范例报告(DER-648) 是一款采用PWM调光的39V-54V输出电压、带功率因数校正的150W LLC电源。 此电源采用了PI的 HiperPFS™-4 大功率PFC控制器和HiperLCS™集成式LLC功率级IC,可实现最少的元件数、优异的热关断保护以及 94%以上的高效
[电源管理]
采用PWM调光技术的150W集成式PFC + LLC <font color='red'>LED路灯</font>电源
下一代48V分布式电源架构的电源设计
  如果要保留紧凑砖型模式的同时缩减电源尺寸,就会遇到如何处理高功率密度所需的散热问题,如何将所有必要组件集成在有限的空间内等等问题。本文就是介绍针对这一问题所展开的既可以节省空间又能够简化48V分布式电源架构(DPA)应用的前端设计方法。   为了在保留紧凑砖型模式的同时缩减电源尺寸,电源制造商必须降低砖型模块的高度,并(或)尽量将外部的供电元件移至砖型模块内部。但同时采取上述两种做法却给电源设计者带来了诸多挑战,其中包括:如何处理高功率密度所需的散热问题,如何将所有必要组件集成在有限的空间内等等。     为了解决这些挑战,西恩迪技术(C&D)公司电力电子部的工程师们的目标是创造一种600瓦的砖型模块原型,既可以节
[电源管理]
下一代48V分布式电源架构的<font color='red'>电源设计</font>
基于TopswitchⅡ型开关芯片的开关电源设计
引言 开关电源本身种类繁多,设计方法也复杂多样,因此研究一种简洁的方法去快速设计出所需要的通用型高效率,低廉价格的开关电源是很有必要的。 1 开关电源工作原理 开关直流稳压电源是基于方波电压的平均值与其占空比成正比以及电感、电容电路的积分特性而形成的。其基本工作原理是,先对输入交流电压整流,从而形成脉动直流电压,经过DC-DC 变换电路变压,再通过斩波电路形成了不同脉冲宽度的高频交流电,然后对其整流滤波输出需要电压电流波形。如果输出电压波形偏离所需值,便有电流或电压采样电路进行取样反馈,经过与比较电路的电压值进行参数比较,把差值信号放大,从而控制开关电路的脉冲频率f 和占空比D,以此来控制输出端的导通状态。因此,输出端便可以得到所
[电源管理]
基于TopswitchⅡ型开关芯片的开关<font color='red'>电源设计</font>
大功率单片开关电源设计
引言     开关电源具有效率高、重量轻、体积小,稳压范围宽等突出优点,从20世纪中期问世以来,发展极其迅猛,在计算机、通信、航天、办公和家用电器等方面得到了广泛的应用,大有取代线性稳压电源之势。提高电路的集成化是开关电源的追求之一,对中小功率开关电源来说是实现单片集成化。开关集成稳压器是指将控制电路、功率开关管和保护电路等集成在一个芯片内,而由开关集成稳压器构成的开关电源就称之为单片开关电源。美国PI公司的单片开关电源系列是其显著的代表。 l 用TOPswitch—GX设计的250W开关电源     TOPSwitch—GX设计的250W开关电源电路如图1所示。直流电压经变压器的原边加到TOPSwitch—GX的漏极D;频率选
[电源管理]
大功率单片开关<font color='red'>电源设计</font>
基于STM32系列单片机的数控正弦波逆变电源设计与实现
逆变电源应用广泛,特别是精密仪器对逆变电源的性能要求更高。高性能逆变电源不仅要求工作稳定、逆变效率高、输出波形特性好、保护功能齐全,还要求逆变电源小型化、智能化、并且具备可扩展性。文中提出一种基于STM32系列单片机STM32F103VE的纯数字式正弦逆变电源,该电源的全部功能由单片机控制实现,具有输出电压、频率稳定,效率高,保护功能齐全的特点。 1 系统设计 系统的整体框架如图1所示。系统采用高频逆变方案,即前级升压加后级逆变的结构,这样可以避免使用笨重的工频变压器,有效的降低了电源的体积、重量及成本,提升电源的效率。电路的工作原理是,12 V的直流输入电压经过滤波后由推挽升压和全桥整流升压到350 V的直流母线电压,再
[单片机]
基于STM32系列单片机的数控正弦波逆变<font color='red'>电源设计</font>与实现
开关电源设计之PI案例:25W连续、28W峰值多输出电源电路
图1所示的DVD或机顶盒 电源 是用TNY280PN(U1)设计的一个 反激 式转换器。在这个设计中,10 μF的C4 电容 选择了U1的增强限流点,在启动或负载瞬态(DVD开仓)时可使电源输出28 W的峰值功率。 图 1. 25 W连续、28 W峰值多输出电源在每一个使能开关周期,U1内部的 MOSFET 导通, 电流 流过变压器T1初级绕组。当初级电流达到MOSFET限流点时,MOSFET关断,变压器T1中的能量被传送到次级。初级箝位 电路 (D5、VR3、R1、R2和C3)将峰值漏极 电压 控制在内部MOSFET的700 V击穿电压之下。输出过压保护(OVP)通过U2、R12、R13、VR1和
[电源管理]
开关<font color='red'>电源设计</font>之PI案例:25W连续、28W峰值多输出电源电路
正确计算DAC功耗数据
随着便携式多媒体系统设计师将电池寿命推向极限,他们正把前所未有的时间花在研究不同硅供应商提供的功耗数据上。以牙还牙式的比较通常是困难的,因为变量实在是太多了,而且竞争器件之间的关键差异常常远不是那么明显。 音频输入和输出子系统尤其困难,因为它们同时包含模拟和数字电路,而且通常需要几个不同的电源电压。其结果是,制造商针对这些器件提供的数据常常与实际使用案例不相关,在有些情况下甚至完全起误导作用。不过,熟悉相关电路的基本知识、深入理解欧姆定律和拒绝相信制造商的面值数据,可以帮助设计工程师看穿这一令人糊涂的迷雾。 每个功耗数字到底包括了什么? 它可能看起来很明显,但理解每一个功耗数字包
[模拟电子]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved