实例解析脱机式LED照明设计

最新更新时间:2013-08-30来源: 21IC关键字:实例解析  脱机式  LED照明设计 手机看文章 扫描二维码
随时随地手机看文章

因应脱机式LED在一般照明的应用需求,LED驱动器除须提供电气隔离、高效率、PFC>0.90和TRIAC调光功能外,还要有良好的LED电流调节,以保持一致的亮度。同时,不管输入电压或LED正向电压如何变化,LED驱动器都必须提供保护功能,以确保系统可靠性。

当人们越来越关注传统照明方法对于环境的影响时,发光二极管(LED)的价格也不断地持续下降,因此,就许多脱机式应用而言,大功率LED正在迅速地成为流行的照明解决方案。高亮度LED能节省能源、具有长寿命并对环境有利,这些特点不断促使种类繁多的固态照明(SSL)应用的发展。根据市场调研机构Strategies Unlimited报告显示,到2010年底,高亮度LED的市场规模已经达到82亿美元,预计至2015年将成长到200亿美元以上。过去几年,用于高画质电视(HDTV)显示器背光照明的LED一直是LED市场成长的主要动力。不过,随着LED一般照明应用在商用和住宅环境逐渐盛行,LED的成长将会显著加速。

与传统照明方法相比,LED照明的功耗可大幅降低,这是LED照明高成长率背后的主因。若与白炽灯照明相比,要提供同样的光输出(以流明为单位),LED需要的电功率则不到白炽灯的25%。LED照明还有其他很多优势,包括工作寿命比白炽灯长,这可大幅降低更换成本;能利用以前安装的三端双向可控硅开关闸流体(TRIAC)调光器为LED调光,也是一个主要的成本优势,尤其是在住宅照明领域。LED能实时导通,不像节能荧光灯(CFL)那样需要预热时间,而且LED对电源周期不敏感,这一点也与CFL不同。此外,LED不含任何须要管理或处置的有毒材料,而CFL需要有毒的水银蒸气才能工作。最后,LED能实现新的、非常扁平的外形尺寸,这是其他技术所无法做到的。

LED照明设计要求甚严 驱动电源成关键

使用脱机式电源驱动LED,可让LED应用得以迅速成长,因为这种形式的电源在商用和住宅建筑中相当容易取得。尽管LED灯更换对终端用户来说实行起来相对简单,但是对LED驱动器集成电路(IC)的设计困难度却大大增加。由于LED需要良好调节的定电流源,以提供恒定量的光输出,所以用交流电(AC)输入电源为LED供电需要一些特殊的设计方法,而且有一些非常特殊的设计要求。

依据在世界上不同地方的差异,脱机式电源的范围约为90~265伏交流电(VAC),同时频率范围为50~65Hz。因此,要为全球市场生产LED灯,理想情况是可提供无须修改就能适用于世界上任何地方的单一电路设计。这就需要单一LED驱动器IC能处理多种输入电压和供电频率。

此外,很多脱机式LED应用,要求其与驱动电路实现电气隔离。这主要是基于安全考虑。电气隔离一般由隔离反驰式LED驱动器架构提供,该架构利用一个变压器隔离驱动电路的一次侧和二次侧部分。

采用LED照明背后的驱动力,是电源提供一定量光输出所需的功率已大幅降低,因此,当务之急是LED驱动器IC要提供最高效率。因为LED驱动器电路必须将高压交流电源转换为在较低电压时,能提供良好调节的LED电流,所以LED驱动器IC必须设计为提供高于80%的效率,如此才不会浪费功率。

此外,为了让LED灯可以使用住宅应用中常见的TRIAC调光器,LED驱动器IC必须能有效地用这些调光器工作。TRIAC调光器系专门为白炽灯和卤素灯而设计,这两种灯是理想的电阻性负载。然而,LED驱动器电路一般是非线性的,而且不是纯电阻性负载。其输入桥式整流器在交流电输入电压处于其正和负峰值时,通常汲取高强度的峰值电流。因此,LED驱动器IC必须通过设计来「模仿」一个纯电阻性负载,以确保LED在不产生任何明显闪烁的情况下正确启动,并利用一个TRIAC进行适当的调光。

在LED照明中,功率因子校正(PFC)是一个重要的性能规格。简而言之,如果所吸取的电流与输入电压成正比且同相,那么就可实现等于1的功率校正因子。因为白炽灯是一种纯电阻性负载,所有输入电流和输入电压是同相的,PFC为1。当PFC与本地电源所需电功率大小有关时更为重要,也就是说,在一个电源系统中,就传输相同数量的有用功率而言,功率因子低的负载比功率因子高的负载汲取更大的电流。需要更大的电流会提高配电系统中损失的能量,而这又导致需要较粗的导线和其他较大型的传输设备。因为较大型不仅设备成本高且浪费能量,所以电力公司通常会向功率因子较低的工业或商用客户收取更高的费用。目前LED应用的国际标准仍然在开发之中,不过大多数人认为,将要求大部分LED照明应用的PFC>0.90。

因为LED驱动器电路(包括很多二极管、变压器和电容)的表现不会与纯电阻性负载一样,所以其PFC可能低至0.5。为了将PFC提高到大于 0.9,主动或者被动PFC电路都必须设计到LED驱动器电路中。必须注意的是,在运用大量LED照明数组的应用中,高PFC尤其重要。例如,在使用超过几百个50瓦(W)LED灯的停车库中,高PFC(>0.95)LED驱动器设计将是很有利的。

除了高PFC之外,将LED灯的谐波失真度降至最低也很重要。国际电工委员会(International Electrotechnical Commission)已经制订了IEC 61000-3-2 C类照明设备谐波规范,以确保新的LED照明系统满足这些低失真要求。

在照明应用中,能在较宽的线路输入电压、输出电压和温度变化范围内准确调节LED电流是至关重要的,因为LED亮度的变化必须是肉眼难以察觉的。相同地,为了确保LED有最长的工作寿命,不用高于其最大额定值的电流驱动LED也是很重要的。在隔离反驰式应用中调节LED电流并不是很容易,常常还需要一个光耦合器来闭合所需的回授环路,或者可能要增加一个额外的转换级。不过,这两种方法都增加了复杂性和可靠性问题。所幸,有些LED驱动器IC采用新的设计方法,以确保无需这些额外的组件或增加设计复杂性,就能准确调节LED电流。

要快速地从白炽灯过渡到LED灯,所面临的最大障碍之一是LED解决方案的成本和尺寸。一般而言,尤其如仓库、停车库等设施,因照明而支付高额能源账单的商业企业会更快采用LED照明,因为费用节省更加明显。随着LED灯购买费用的下降,预期将有更多消费者愿意转向LED照明。

最后,同样重要的因素则是LED照明解决方案的尺寸。很多照明灯都是直接旋进灯座就可以更换,因此整个LED解决方案必须能装进与原来的白炽灯体积和形状相同的空间中。LED需要一个散热片和一个极复杂的驱动器电路,所以在与白炽灯体积和形状相同的空间中,装入包括这两个部分的整个LED解决方案,可能是个挑战。因此,所需要的LED驱动器IC要能在一个简单、且面积精小的解决方案中提供所有这些需要的功能和特性。

满足脱机式照明要求 高整合驱动器出炉

为了满足脱机式照明的要求,例如高功率因子、高效率、隔离和TRIAC调光器兼容性,先前的LED驱动器采用很多外部分立式组件,结果形成了既庞大又复杂的解决方案。而最新的驱动器LT3799则整合了脱机式LED照明需要的所有功能,解决了相关复杂性、空间和效能问题。LT3799是一款具主动功率因子校正的隔离反驰式LED控制器,专门为在90~265VAC的通用输入范围驱动LED而设计。该组件以关键导通(边界)模式控制一个隔离反驰式转换器,适用于需要4~100瓦或更高LED功率的LED应用。其新颖的电流检测电路无须使用光耦合器,就能向二次侧提供良好调节的输出电流。其独特的泄能(Bleeder)电路使得LED驱动器可与TRIAC调光器兼容,而无须增设额外的组件。LED开路和短路保护则可确保长期可靠性。

图1显示一个完整的LED驱动器解决方案,其效率高达86%。从一次侧开关电流波形检测输出电流。就一个以边界模式工作的反驰式转换器而言,输出电流方程式为:IOUT=0.5×IPK×N×(1–D),IPK代表峰值开关电流,N是一次侧至二次侧匝数比,D为工作周期比。该IC透过一种新颖的回馈控制电路调节峰值开关电流和工作周期比以此调节输出电流。与须要知道输入功率和输出电压信息的其他一次侧检测方法不同,这种新型电路提供较好的输出电流调节,因为准确度几乎不受变压器绕组电阻、开关RDS(ON)、输出二极管正向压降和LED电缆压降的影响。

 

采用LT3799和TRIAC可调光的20瓦脱机式LED驱动器高功率因子/低谐波防止电流失真

透过使线路电流跟随施加的正弦波电压,这种高功能整合的驱动电路实现了高功率因子,并且满足了IEC 61000-3-2 C类照明设备谐波要求。如果所吸取的电流与输入电压成正比,就能实现等于1的功率因子。其用一个从输入电压产生并与输入电压成比例的电压调制峰值开关电流。如图2所示,这种方法提供0.98或更高的功率因子。一个小带宽回馈环路保持对输出电流的调节,而且不会使输入电流失真。

 

具主动功率因子校正的LT3799的VIN和IIN波形

可与TRIAC调光器相容

当TRIAC调光器处于断开状态时,其实不是彻底断开的。有相当大的漏电流通过其内部滤波器流至LED驱动器。这个电流为LED驱动器的输入电容器充电,进而导致LED随机开关和闪烁。过往的解决方案是增加一个泄能电路,该电路包括一个大且昂贵的高压金属氧化物半导体场效晶体管(MOSFET)。LT3799将变压器一次侧绕组和主开关用作泄能电路,因此无需这类MOSFET或其他任何额外的组件。如图3所示,当TRIAC断开时,MOSFET闸极讯号为高,且MOSFET接通,进而泄放掉漏电电流,并保持输入电压为 0伏特(V)。TRIAC一导通,MOSFET就无缝地变回正常的供电组件。

 

MOSFET闸极讯号和VIN

 

独特LED电流调节降低成本提高可靠性

此外,LT3799在整个输入电压、输出电压和温度范围内提供LED电流调节。从图4可见,正如大多数美国照明应用所要求,当输入从90VAC变到150VAC时,LED电流保持在±5%的调节范围内。LT3799采用一个独特的电流检测电路取代了光耦合器,以向二次侧提供良好调节的电流。此举不仅降低了成本,还改善了可靠性。

 

LT3799 LED电流调节与VIN(AC)

 

LED开路/短路保护

通过变压器的第三个绕组持续监视LED电压。当主开关断开时,第三个绕组的电压与输出电压成正比,输出二极管传导电流。一旦过压或LED开路,主开关就断开,高精度比流器(CT)接脚的电容开始放电。然后该电路进入打嗝(Hiccup)模式。在LED短路情况下,VIN接脚电压降至低于欠电压(UVLO)门限之前,该IC以最低频率运行,因为第三个绕组不能给该IC提供足够的功率,然后该IC进入启动排序状态。

CTRL接脚控制电压实现模拟调光LT3799的输出可以通过多个CTRL接脚调节。例如,输出电流可以跟随一个加到任意CTRL接脚的直流电(DC)控制电压,以实现模拟调光。过热保护和线路过压保护功能也可以利用这些CTRL接脚轻松地实现。

创造更精小并具成本效益解决方案LT3799运用具整个LED驱动电路(包括电磁干扰滤波器)的单级设计,仅需要四十个外部组件,让解决方案简单、配置面积精小和具成本效益等优势。图1中20瓦电路的总尺寸仅为30毫米(mm)×75毫米,厚度仅为30毫米,非常适用于多种LED应用。透过改变几个外部组件,这个电路就可以进一步为120VAC、240VAC甚至377VAC应用或几乎任何常见的AC输入而优化。

为因应通用照明应用的脱机供电LED,不断促进对高性能和具成本效益的LED驱动器IC解决方案需求。这类LED驱动器须提供电气隔离、高效率、PFC>0.90和TRIAC调光功能。并且提供良好调节的LED电流,以保持一致的亮度,而不管输入电压或LED正向电压如何变化,都必须提供保护功能以提高系统可靠性。向LED照明过渡的经济性也要求LED驱动器电路须非常具成本效益,庆幸的是,这类LED驱动器已经问世。

关键字:实例解析  脱机式  LED照明设计 编辑:探路者 引用地址:实例解析脱机式LED照明设计

上一篇:75W反激式LED驱动电源电路解析
下一篇:四代线性高压LED驱动方案及其发展趋势

推荐阅读最新更新时间:2023-10-12 22:25

LED照明设计需考虑的各种因素分析
LED照明 应用的主要设计挑战包括以下几个方面:散热、高效率、低成本、调光无闪烁、大范围调光、可靠性、安全性和消除色偏。这些挑战需要综合运用适当的 电源 系统拓扑架构、 驱动 电路拓扑结构和机械设计才能解决。 由于 LED灯 必须能够装设在原有的旧式插座之内,因此散热是一个必须克服的大问题。但严格来说,这可以利用机械工程技术解决的问题, LED 系统生产商的责任是努力开发新技术,尽量提高LED的 亮度 (即每单位 功率 产生的 流明 量)。   LED的相对高成本是LED照明市场目前仍难以大规模起飞的主要障碍。例如,英飞凌科技有限公司 电源管理 业务部产品市场总监AlexanderSommer就说:“
[电源管理]
安森美半导体分享LED照明设计基础知识
发光二极管(LED)继在中小尺寸屏幕的便携产品背光等应用获大量采用后,随着它发光性能的进一步提升及成本的优化,近年来已迈入通用照明领域,如建筑物照明、街道照明、景观照明、标识牌、信号灯、以及住宅内的照明等,应用可谓方兴未艾。 另一方面,LED照明设计也给包括中国工程师在内的工程社群带来了挑战,这不仅因为LED照明的应用范围非常广泛,应用的功率等级、可以采用的驱动电源种类及电源拓扑结构等,也各不相同。工程师们迫切需要系统地学习及了解更多有关LED照明设计的基础知识。有鉴于此,安森美半导体的产品应用总监Bernie Weir先生近期专门撰写相关培训资料,为工程师们传授相关的设计基础知识,内容涉及LED驱动器的通用要求
[电源管理]
安森美半导体分享<font color='red'>LED</font><font color='red'>照明设计</font>基础知识
酒店照明设计LED灯具之间配搭技术解析
室内照明 空间的种类不少,然而谈到酒店空间 照明 ,它绝对称得上是相对复杂的一个类型。   它包含了家的温暖、社交场所的华丽、用餐空间的舒适、会议场所的多功能以及休闲空间的静僻与放松。也因此,从事酒店照明的设计师比例相较其他类型少得多。   透过以下的议题,为大家揭开酒店照明的神秘面纱,也希望让大家对酒店照明有更进一步的了解与兴趣。以下所涉及的议题均以国际级五星级酒店为主。    真正的老大-酒店之风格定位与区分   一谈到酒店照明设计,就必须提及酒店管理公司。因为除了业主外,他对用不用你有着生杀大权。他甚至可以否决业主采用你作为照明设计师的决定。理由呢? 你不在酒店的推荐名单内 。就这么简单?
[电源管理]
酒店<font color='red'>照明设计</font>与<font color='red'>LED</font>灯具之间配搭技术<font color='red'>解析</font>
购物中心LED照明设计详细方案分析
现在Shopping Mall(大型购物中心)越来越多,每个Mall几乎都有个超级高的中庭,有4层楼的,有8层楼的,徐工做过最高一个达到35米!   面对这样的空间,如何 照明 呢?   先来看Q群里学员提的问题吧:   图:学员提问 中庭最高处的这几个灯,应该选什么瓦数?什么光束角?   我的回答是: 请问,这几个灯,你怎么检修呢?   对!我没有回答他的提问,而是问了另外一个问题。   作为设计师,不考虑检修,就是耍流氓~   然后,群里老学员师兄们,贴出了以下两张图片:   图:蜘蛛人、升降葫芦吊。   喂!贴蜘蛛人的那位师兄,你是来搞xiao的么?
[电源管理]
购物中心<font color='red'>LED</font><font color='red'>照明设计</font>详细方案分析
汽车网络安全攻击实例解析(二)
引言:汽车信息安全事件频发使得汽车行业安全态势愈发紧张。这些汽车网络安全攻击事件,轻则给企业产品发布及产品口碑造成影响,重则导致大范围的汽车召回或股价受损,造成的经济损失和安全代价不可估量。本文则选取典型的智能网联汽车网络安全攻击实例展开详细介绍。 01 汽车信息安全威胁 随着汽车不断向智能化、网联化、电动化、自动化的发展,软件定义汽车的趋势日益显著。目前智能网联汽车关键代码规模提升了10-100倍,代码漏洞呈指数级增长,同时汽车电子控制单元(ECU)的数量和车内连通性不断增长,导致汽车受到信息安全攻击的风险大大增加。 近年来频发的汽车信息安全事件加剧了社会各界对于智能汽车发展前景的担忧。比如2015年美国黑帽大会,研究人
[嵌入式]
汽车网络安全攻击<font color='red'>实例</font><font color='red'>解析</font>(二)
KUKA机器人建立函数实例解析
DEFFCT ...ENDFCT:定义函数 DEFFCT 数据类型 名称( 变量:IN  |OUT ) 指令 RETURN 函数值 ENDFCT 句法:   元素 说明 数据类型 功能的数据类型 名称 功能的名称 变量 如果将一个值传递到功能中:要将该值传递到其中的变量名称 IN | OUT 如果将一个值传递到功能中:传递的种类 函数值 反馈值 函数是指返回参数回主函数的子程序。 程序的返回类型也是一种数据类型。 传递的参数必须在ENDFCT
[机器人]
解析LED照明电源设计的核心难题
在 LED 照明电源设计中,存在以下几个设计难题:电解电容寿命与LED不相匹配、LED灯闪烁的常见原因与处理办法、PWM调光对LED的寿命有何影响、利用TRIAC调光调控LED亮度的潜在问题。安森美半导体高级应用工程经理郑宗前在文中针对这些问题的发生原因和解决方法展开论述。    电解电容寿命与LED不相匹配的问题    LED照明 的一个重要的考虑因素,就是 LED驱动 电路与LED本身的工作寿命应该能够相提并论。虽然影响驱动电路可靠性的因素有很多,但其中电解电容对总体可靠性有至关重要的影响。为了延长系统工作寿命,需要有针对性地分析应用中的电容,并选择恰当的电解电容。   实际上,电解电容的有效工作寿命在很
[电源管理]
Power Integrations推出全新离线LED照明设计
Power Integrations公司今日在I IC 2008及第四届广州国际 LED 展览会(LED China 2008)上宣布推出三款全新的参考设计,以加快LED技术在照明领域的应用步伐。   能效法规在世界范围内的逐步实施以及高亮度LED性能的不断改进,加快了LED技术在照明市场的推广应用。 Power Integrations ( 代理商:聚兴科技 )针对新兴LED应用的不同 功率 要求开发出了一系列功率转换IC解决方案。该公司所推出的TinySwitch-III、TOPSwitch-GX和LinkSwitch-TN器件都是目前市场上体积最小、效率最高的功率转换IC,它们不但性能高,而且还集成了多项功能。今天所发布
[焦点新闻]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved