高压LED基本结构及关键技术分解

最新更新时间:2014-06-24来源: 互联网关键字:高压LED 手机看文章 扫描二维码
随时随地手机看文章

  最近几年由于技术及效率的进步,LED的应用越来越广;随着LED应用的升级,市场对于LED的需求,也朝更大功率及更高亮度,也就是通称的高功率LED方向发展。

  对于高功率LED的设计,目前各大厂多以大尺寸单颗低压DC LED为主,做法有二,一为传统水平结构,另一则为垂直导电结构。就第一种做法而言,其製程和一般小尺寸晶粒几乎相同,换句话说,两者的剖面结构是一样的,但有别于小尺寸晶粒,高功率LED常常需要操作在大电流之下,一点点不平衡的P、N电极设计,都会导致严重的电流丛聚效应(Current crowding),其结果除了使得LED晶片达不到设计所需的亮度外,也会损害晶片的可靠度(Reliability)。

  当然,对上游晶片製造者/晶片厂而言,此作法製程相容性(Compatibility)高,无需再添购新式或特殊机台,另一方面,对于下游系统厂而言,週边的搭配,如电源方面的设计等等,差异并不大。但如前所述,在大尺寸LED上要将电流均匀扩散并不是件容易的事,尺寸愈大愈困难;同时,由于几何效应的关係,大尺寸LED的光萃取效率往往较小尺寸的低。

 

  

  图:低压二极体、交流二极体及高压二极体驱动方式的差异。

 

  第2种做法较第1种复杂许多,由于目前商品化的蓝光LED几乎都是成长于蓝宝石基板之上,要改为垂直导电结构,必须先和导电性基板做接合之后,再将不导电的蓝宝石基板予以移除,之后再完成后续製程;就电流分布而言,由于在垂直结构中,较不需要考虑横向传导,因此电流均匀度较传统水準结构为佳;除此之外,就基本的物理塬理而言,导电性良好的物质也具有高导热的特质,藉由置换基板,我们同时也改善了散热,降低了接面温度,如此一来便间接提高了发光效率。但此种做法最大的缺点在于,由于製程复杂度提高,导致良率较传统水平结构低,製作成本高出不少。

 

  高压发光二极体(HV LED)基本结构及关键技术

 

  晶元光电于全球率先提出了高压发光二极体(HV LED)作为高功率LED的解决方案;其基本架构和AC LED相同,乃是将晶片面积分割成多个cell之后串联而成。其特色在于,晶片能够依照不同输入之电压的需求而决定其cell数量与大小等,等同于做到客製化的服务。由于可以针对每颗cell加以优化,因此能够得到较佳的电流分布,进而提高发光效率。

  高压发光二极体和一般低压二极体在技术上最主要的差异有叁,第一为沟槽(Trench)。沟槽的目的在于将复数颗的晶胞独立开来,因此其沟槽下方需要达到绝缘的基板,其深度依不同的外延结构而异,一般约在4~8um,沟槽宽度方面则无一定的限制,但是沟槽太宽代表着有效发光区域的减少,将影响HV LED的发光效率表现,因此需要开发高深宽比的製程技术,缩小製程线宽以增加发光效率。

  第二为绝缘层(Isolation),若绝缘层不具备良好的绝缘特性,将使整个设计失败,其困难点在于必须在高深宽比的沟槽上披覆包覆性良好、膜质紧密及绝缘性佳的膜层,这也是单晶AC LED製程上的关键。

  第三个是晶片间的互连导线(Interconnect)。一般而言,要做到良好的连结,导线在跨接时需要一个相对平坦的表面,一个深邃的阶梯状结构将使得导线结构薄弱,在高电压、高电流驱动下易产生毁损,造成晶片的失效,因此平坦化製程的开发就变得重要。理想的状态是在做绝缘层时,能一併将深邃的沟槽予以平坦化,使互连导线得以平顺连接。

  此外,高压发光二极体在应用上和一般低压二极体最主要的不同点为,它不仅仅能够应用于定直流(Constant DC)中,只要外接桥式整流器,它也能够应用于交流环境,非常具有弹性。在高压发光二极体中,外部整流器捨弃AC LED採用同质氮化镓的做法而改採用硅整流器,不仅使得耗能少,更可防止逆向偏压过大对晶片所造成的影响;最后,因为高压发光二极体较AC LED少了内部桥整的发光区,使发光效率相对较高,耐用度也较佳。  作为大尺寸、高功率LED的解决方案

 

  高压发光二极体的效率优于一般传统低压发光二极体,主要可归因为小电流、多cell的设计能均匀地将电流扩散开来,进而提升光萃取效率。在一些应用当中,除了需要考虑晶片本身效率外,最终产品的售价也是一项重要指标;例如在当前照明领域中,LED灯源仍不被视为主流性产品,关键点在于其售价仍旧偏高。LED灯源价格高昂的塬因,除了晶片本身的价格之外,尚需要考虑整体的物料清单(Bill of material;BOM),例如由于发光二极体本质上为一具有极性的元件,必须供给一顺向偏压才得以点亮,因此一般LED照明光源内都必须附加交流转直流(AC/DC)的电源转换系统,这是必须付出的成本。

  又因LED本身体积小,热源容易集中,而造成所谓热点(Hot spot)现象,使得发光元件本身寿命变短。为了解决热点的问题,LED灯源上的散热设计也不可缺少,目前散热设计方面以金属散热片最为常见,但金属散热片除了增加灯源的重量,也增加灯源的成本。由于高压发光二极体本身效率高,会减少废热及对散热的需求,进而削减成本;从电源转换的角度而言,高电压小瓦数的电源转换器如返驰拓僕式电路,除了体积小外,因为採用的元件少,成本也较低。因此,高压发光二极体的优点不仅在于晶片本身,它能直接或间接进一步提升整体模组的效率。

  总括而言,在应用及设计上,单晶片的高压发光二极体有下列好处:

  1、节省变压器能量转换的损耗及降低成本。

  2、除了高电压直流的应用外,利用外部桥式整流电路也可设计于交流下操作。

  3、体积小不佔空间,对封装及光学设计都具有极佳的运用弹性。

  4、除了红色萤光粉外,也可以运用蓝、红HV LED搭配适当的黄、绿色萤光粉製成更高效率的高CRI暖白LED。

  目前在晶元光电中,会首先依据客户的各项参数需求,做设计準则的基本检查;进一步根据相关的光、电及热模型执行模拟,决定单位晶胞的大小、数目及最终产品呈现形式后,再加以实践验证;并根据实践所收集到的资料,验证塬始设计,或是加以修改达到优化的结果。目前晶元光电研发中心已经着手进行高压发光二极体相关模拟光、电及热模型的建立。

关键字:高压LED 编辑:探路者 引用地址:高压LED基本结构及关键技术分解

上一篇:大功率蓝光LED光源驱动电路设计
下一篇:高可靠交流-直流LED照明驱动设计

推荐阅读最新更新时间:2023-10-12 22:42

综合对比分析高压钠灯与LED灯性能优劣
灯具寿命是指这个灯具从开始使用到达到死亡的时间。对于 LED灯具 的寿命现在各大厂家都在提光源寿命大于多少多少小时。并算出 照度 均匀度。以一个光源的正下方为点,做垂线,交行车道两边AB两点。照度均匀度是道路照明另一个非常重要的标准。结果:高压钠灯65.77Lux0.38。 LED光源 显色性好,能很好的还原物体的实际色彩,但白光偏冷。   1、关于 LED 和纳灯的 光效   2007年LED的光源光效最好的只能达到80lm/w,国内的就更差。再经过灯具之后实际应用光效就更低。在那个阶段LED光源绝大部分都被用来作为指示照明和景观照明使用,并没有在像路灯照明这样的应用环境下推广。但一些无良厂家和少数部门为了
[电源管理]
一文看懂用高压LED提高LED灯泡效率的方法
使用LED作为光源的灯泡来替代螺纹旋入式白炽灯泡有很多好处。一般而言,我们将小号(5-9)的LED串联起来,使用一个电源将线电压转换为低电压(通常为数十伏),这时的电流约为350到700mA。在确定如何最好地让用户同线电压隔离的过程中,我们需要深思熟虑、权衡利弊。我们可以在电源中实现隔离,也可以在LED安装过程中进行这种隔离。在一些低功耗设计中,LED物理隔离是一种常用方法,因为它允许使用成本更低的非隔离式电源。 即使这种电源产生的输出功率大致相同,但也存在一些影响电源尺寸的明显差异。升压电源的电感器尺寸明显更小,因为其蓄能要求更低。相比升压电源,降压电源有一个更大的电阻器。该电阻器为一个仿真负载电阻器(图2所示R20),用
[电源管理]
高压、高亮度LED驱动设计
  由于现在各国都在不断减少白炽灯泡的使用而且各大公司也都意识到转向使用一些替代照明方法可以实现节能,而这其中发光二极管 (LED) 和紧凑型荧光灯 (CFL) 便是主要的选择,因此对于低成本、低环境影响照明解决方案的需求比以往任何时候都要强烈。虽然差异明显,但上述两种替代照明方法都较为可行。CFL 照明的主要缺点是较长的启动时间和较低的亮度调节性能,但相比 LED 解决方案其成本极低。另一方面,LED 具有“快速开启”特性且亮度调节性能较好,但因成本问题普及较慢。半导体厂商们不断制造新的 LED 驱动器组件,旨在降低系统复杂度和成本。同时,LED 厂商不断提升高亮度 LED 的功效(发光效率),目的是减少要求 LED 数目,以及
[电源管理]
<font color='red'>高压</font>、高亮度<font color='red'>LED</font>驱动设计
使用高压 LED 提高灯泡效率
使用 LED 作为光源的灯泡来替代螺纹旋入式白炽灯泡有很多好处。一般而言,我们将小号(5-9)的LED 串联起来,使用一个电源将线电压转换为低电压(通常为数十伏),这时的电流约为 350 到 700mA。在确定如何最好地让用户同线电压隔离的过程中,我们需要深思熟虑、权衡利弊。我们可以在电源中实现隔离,也可以在 LED 安装过程中进行这种隔离。在一些低功耗设计中,LED 物理隔离是一种常用方法,因为它允许使用成本更低的非隔离式电源。图 1 显示了一种典型的 LED 灯替代方法。本举例中的电源为非隔离式电源,其意味着实现用户高压保护的隔离被嵌入到了封装而非电源中。很明显,电源的空间极其小,从而对封装构成了挑战。另外,电源被隐埋到封装内
[电源管理]
使用<font color='red'>高压</font> <font color='red'>LED</font> 提高灯泡效率
基于PT6913非隔离高压LED驱动IC方案
  驱动IC简介   PT6913芯片 采用线性恒流控制输出电流,内部集成功率MOS,输出电流可通过外部电阻设定为10mA~60mA. PT6913最大输入电压可达 400V,采用高端驱动方式,提供 LED 开路、LED 短路保护。在任何情况下,输入电源高出LED负载的多余电压都由 PT6913承受, LED负载不会面临过压威胁,这为整体方案提供了非常高的可靠性与稳定性。   为了防止 IC过热损坏,PT6913集成温度补偿功能,当IC内部结温上升到 130℃时,PT6913开始减小输出电流,当结温达到 150℃时,输出电流将会减小至 0.这可避免传统过温保护方式的闪烁问题。   工作原理   PT6913A/B采用线性恒流
[电源管理]
基于PT6913非隔离<font color='red'>高压</font><font color='red'>LED</font>驱动IC方案
基于PT6913非隔离高压LED驱动IC方案
驱动IC简介 PT6913芯片采用线性恒流控制输出电流,内部集成功率MOS,输出电流可通过外部电阻设定为10mA~60mA. PT6913最大输入电压可达400V,采用高端驱动方式,提供LED开路、LED短路保护。在任何情况下,输入电源高出LED负载的多余电压都由PT6913承受,LED负载不会面临过压威胁,这为整体方案提供了非常高的可靠性与稳定性。 为了防止IC过热损坏,PT6913集成温度补偿功能,当IC内部结温上升到130℃时,PT6913开始减小输出电流,当结温达到150℃时,输出电流将会减小至0.这可避免传统过温保护方式的闪烁问题。 工作原理 PT6913A/B采用线性恒流驱动技术,电路拓扑简单实用。LED负载,芯片与整
[电源管理]
基于PT6913非隔离<font color='red'>高压</font><font color='red'>LED</font>驱动IC方案
工程师解读如何用高压LED提高LED灯泡效率
使用 LED 作为光源的灯泡来替代螺纹旋入式白炽灯泡有很多好处。一般而言,我们将小号(5-9)的LED串联起来,使用一个电源将线电压转换为低电压(通常为数十伏),这时的电流约为350到700mA。在确定如何最好地让用户同线电压隔离的过程中,我们需要深思熟虑、权衡利弊。我们可以在电源中实现隔离,也可以在LED安装过程中进行这种隔离。在一些低功耗设计中,LED物理隔离是一种常用方法,因为它允许使用成本更低的非隔离式电源。   图1灯泡替换使电源空间变得极小   图1显示了一种典型的LED灯替代方法。本举例中的电源为非隔离式电源,其意味着实现用户高压保护的隔离被嵌入到了封装而非电源中。很明显,电源的空间极其小,从而对封装构成了挑战。
[电源管理]
工程师解读如何用<font color='red'>高压</font><font color='red'>LED</font>提高<font color='red'>LED</font>灯泡效率
让节能灯具面向未来:ST推出低失真高压LED驱动器
意法半导体发布HVLED007 AC/DC LED驱动器,采用新的失真抑制输入电流整形(ICS)电路,使节能型固态灯具符合日益严格的照明规定。 HVLED007是一个峰值电流模式PFC控制器,为隔离式高功率因数准谐振反激式转换器专门设计,ICS电路确保电网输入电流是真正的正弦交变电流,在整个负载和输入电压范围内,输入电流总谐波失真(THD)极低,在满负荷时低于5%。功率因数接近1,最高能效高于90%,HVLED007允许设计人员仅用一个控制IC驱动多个高达80W的中高功率LED照明灯具。 HVLED007完善了意法半导体的HVLED系列直接用电网整流电源驱动LED灯具的数字IC产品。HVLED驱动器集成先进的功能,支
[电源管理]
让节能灯具面向未来:ST推出低失真<font color='red'>高压</font><font color='red'>LED</font>驱动器
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved