汽车LED照明应用中的热模拟设计方案

最新更新时间:2018-05-25来源: 华强LED网关键字:led  pcb  led照明  热模拟 手机看文章 扫描二维码
随时随地手机看文章

发光二极管(led)在当今许多照明技术领域都被使用和接受。但是如果没有合适的热设计,LED灯就不可行。6SigmaET的开发经理Chris Aldham解释了为什么将关键组件保持在有限的温度范围内是非常关键的,为什么这使得热模拟对LED设备设计者很重要,以及如何为这个任务选择合适的热管理模拟工具。

汽车LED应用中的热模拟

一旦被视为“未来的光源”,LED就会迅速成为常态。LED产品的设计是一个复杂的多学科问题,特别是散热设计对器件的性能和使用寿命至关重要。借助正确的热仿真工具,开发团队能够更好地提供符合可靠性,外形尺寸和性能目标的产品。

设计挑战

由于将电流直接转换为半导体中的光辐射,因此LED具有高效率 - 比大多数“传统”照明技术更高效。然而,尽管比白炽灯或荧光灯照明效率更高,但LED中的大量电力仍转化为热量而不是光 - 电流越高,产生的热量就越多。

这种多余的热量必须远离LED传导:这是因为半导体材料被限制在最高温度,并且其特性(例如正向电压,波长和寿命)可能随温度而变化。

随着温度的升高,LED的光输出可能会降低10%。同样,保持所需的光色与温度有关。

LED灯的预期使用寿命 - 通常在25,000至50,000小时之间 - 也与照明灯具内的温度密切相关。

最终,只有充分的热管理才能促进LED在运行过程中的性能和效率。适当的冷却 - LED本身和驱动电路中使用的铝电解电容 - 是设计过程的核心。

持续的市场对更紧凑的灯具和灯具的需求进一步加剧了这些基本挑战。

在娱乐照明等便携式应用中需要较小的照明装置,以便它们能够更容易地运输和处理,并且在使用中不那么突出。在改装应用中 - 从路灯到家用筒灯等各种应用 - 设计师需要将尺寸和形状保持在现有固定装置所定义的范围内。这通常包括挤压夹具内的电子驱动器电路,以及 - 在定向照明的情况下 - LED发射器模块和透镜。这意味着热量必须从不断减少的空间中消散。

在设计阶段也必须考虑最终应用。LED部署在各种各样的环境中; 在汽车应用中,例如,设备可能需要在高达85oC的环境温度下工作。这意味着制造商必须建立自己的设备,以满足客户对输出,颜色和使用寿命的要求,同时考虑工作温度,并允许任何由温度引起的性能转变。

管理传热

对于设计人员来说,热管理的目的是将设备产生的热量转移到环境空气中,以防止部件过热。热管理的范围和复杂程度取决于热量的大小,来源的大小以及预期的环境条件。处理这些因素需要明确定义的传热路径。

通常,系统传热路径始于热源(半导体结层),并在最终到达环境空气之前通过PCB,散热器和外壳行进(图1)。挑战在于在功率等级和设备应用的限制范围内管理这种传热。

图1:  LED系统中的传热

通常,LED系统的热管理可以分解为三个系统级别:LED本身,基板/ PCB和冷却单元。系统传热的热路径可以用相同的术语来描述。LED屏障层中产生的热量通过LED外壳(封装)通过焊接接头传输到载体(PCB)上。在PCB级别,可以通过各种设计措施(水平和垂直导热)将热量传输到散热器。从散热单元(例如散热器,系统外壳),热量最终通过自然对流和热辐射传递至周围环境。

在每个阶段,设计人员都面临着许多关键的决定,以优化传热。

在LED水平上,住房类型对热管理有重大影响。举几个例子来说,基于引线框架的LED外壳和基于陶瓷的LED外壳为设计师提供了不同的传热方法。

对于引线框架外壳(图2),半导体芯片安装在引线框架上,在大多数情况下,该引线框架由镀铜合金组成。连接可以胶合或焊接。从阻挡层开始,热量主要通过芯片和引线框架从封装散发出去。通过接合线发生的热传递量是微不足道的。

图  2: 通过导线的热传导

在基于陶瓷衬底的LED封装的情况下(图3),半导体芯片连接到陶瓷的金属化层。陶瓷具有良好的导热性,可以与金属化层一起散热。半导体中产生的热量通过金属化层和陶瓷基材分布,并通过焊盘传递给PCB。

图3:通过陶瓷基板进行导热

了解LED外壳中的热传导路径非常重要,因为它能够正确选择后续系统组件(PCB,焊盘等)。

PCB的散热设计为设计人员提供了另一系列决策(图4)。热量可以通过PCB(水平传导)或通过PCB(垂直传导)传输。

图4:  PCB级别的各种散热设计元件

在这两种情况下,导电路径都受到一系列因素的影响:LED在PCB上的位置,需要耗散的热损耗水平以及是否有其他潜在的热源接近。而且,缩小LED设备会增加复杂性。较小的设备与电路板的接触面积减小; 以前,旧的和更大的封装意味着更多的散热可以在设备本身上完成。这些较小的设备越来越多地迫使这一过程在PCB上进行。

然后,这些因素影响材料选择,所需的表面积,导电层所需的厚度以及PCB设计中对热通孔的需求。

最后的系统层是向周围环境过渡的点。从这一点来说,由于空气的低传导性,热量只能通过对流或辐射有效地消散。

大多数LED设计依靠自然对流,而不是强制对流。这意味着设计师需要提供最大表面积的散热片 - 而不是采用像风扇这样的主动方法,或者更复杂的方法,如珀耳帖元件,热管或水冷。

图5: 汽车LED应用中的热模拟

模拟在LED设计中的重要性

以上因素说明了为什么散热设计在LED照明产品设计中如此重大的挑战。如前所述,LED照明设计师需要知道他们的设备将符合规格,通常在非常具有挑战性的环境中。向客户提供不提供所需颜色或预期寿命的LED是不可接受的。

6SigmaET自己的研究表明,近三分之二的工程师[1]倾向于“过度设计”他们的设计,而不是使用工具来优化散热性能。说到LED灯,由于尺寸限制和其他因素,不可能依赖“经验法则”。

有许多变数需要考虑,以及一系列可供选择的潜在设计选项。热仿真是评估具有已知边际条件和负载的不同冷却概念的唯一方法。它使设计人员能够识别散热问题,并尝试使用不同的LED封装,PCB材料和冷却设备 - 而无需创建原型。以这种方式使用热模拟可以让LED设计师确保其设计满足性能要求。这使得热仿真成为LED照明设计的重要组成部分。

那么,LED设计师应该在热仿真工具中寻找哪些关键特性?

热仿真工具的实践

越来越多的热仿真工具是绝对必要的。他们不再是一个“很高兴拥有”。关键驱动因素之一是产品的平均上市时间现在非常短暂。因此,在使用仿真与物理测试相结合时,CFD工具需要在开发过程中节省大量时间。根本没有时间进行广泛的物理实验。

除了减少对物理测试的依赖,使用专用的热仿真软件还可以带来其他好处,包括降低设计风险和LED产品冷却效率提高10-30%。总的来说,可以估计,就客户的总上市时间而言,它可以节省几周到几个月的时间。

图6和图7: 两种不同LED替换灯设计的仿真模型

复杂的几何处理:

大多数热模拟工具可以很容易地处理正方形或矩形的形状,但是LED灯很少,如果有的话,正方形。因此,需要一个工具,可以很容易地建模并解决LED设计中所期望的更圆或圆形的形状。

大型模型处理:

OTS认为其设计模型正变得越来越大,越来越复杂。在它的几个LED项目中,它的模型包含了多达5- 1500万个网格单元。该工具需要处理这些大型模型,而不会变得太慢或难以处理。

快速测试多个设计变量:

在进行敏感性研究时,处理大型模型的能力尤为重要。要真正优化设计,快速测试多种设计的变化——组件的放置、外壳材料、环境等——是确保产品按要求工作的关键。选择一个可以使这个过程尽可能简单的工具。

结论

如果没有正确的热设计,你的LED灯将会迅速失效。然而,优化任何LED照明产品的热设计是一个重大的挑战,设计师需要有合适的工具。如果您正在与上面描述的任何因素作斗争,那么可能是时候重新评估您的模拟工具了。

关键字:led  pcb  led照明  热模拟 编辑:王磊 引用地址:汽车LED照明应用中的热模拟设计方案

上一篇:TE 推出 LUMAWISE LED Z45型底座
下一篇:科鑫光电边沿仅4.5cm的高性价比led圆形屏投产

推荐阅读最新更新时间:2023-10-12 23:02

高功率白光LED应用的散热问题
虽然看起来在特性的方面是相当的不错,不过实际上还是有一些缺点的,就像在使用寿命上,只有3,000小时左右,再加上价格太贵也是不容易解决事情,或许价格太贵的问题可以花一点时间就可以下降一些,但是以现在30万日圆的水准来看的,要降到3,000甚至300日圆,那就需要10年以上的时间 就今天而言,白光LED仍旧存在着发光均一性不佳、封闭材料的寿命不长,而无法发挥白光LED被期待的应用优点。但就需求层面来看,不仅一般的照明用途,随着手机、LCD TV、汽车、医疗等的广泛应用积极的出现,使得最合适开发稳定白光LED的技术研究成果也就相当的被关心。 ■藉由提高晶片面积来增加发光量  期望改善白光LED的发光
[电源管理]
一款用于大功率LED灯具散热风扇检测的经典电路
LED的寿命与其PN结的温度成反比。在一些空间比较有限的大功率LED灯具里,降低LED的温升无法靠使用更大体积的散热片来实现,比如轨道灯,使用直流电风扇强制散热成了一种不得已而为之的选择。近年来随着制造工艺的不断提高,电风扇的寿命有所延长,甚至有的厂家声称电风扇的的寿命要比LED的寿命还长。但不管怎样,靠机械式接触的电风扇总让人无法放心使用在可靠性要求很高的大功率LED灯具中,加入一个电风扇运行状态监测电路,在风扇出现故障停转时自动切断主电路,保护LED不致于过热损坏,这个思路可供评估。基于这种思路开发了一款散热风扇检测的电路。框图如下:      下面阐述这种思路的原理   风扇的主要失效方式有断路和堵转。
[模拟电子]
一款用于大功率<font color='red'>LED</font>灯具散热风扇检测的经典电路
初步构建LED光源的植物生长动态补光控制系统
光合作用是是生物界所有物质代谢和能量的物质基础,植物在光合作用的原初反映,将吸收光能是以较大的荧光方式释放的,因此叶绿素荧光与光合作用有着十分密切的关系。近30年来, LED 人工光源在设施园艺、植物设施栽培、太空农业中的研究已经在全世界范围内引起广泛关注。通过不同光质对草莓、兰花等植物的研究结果表明,红光对植物形态、调节株高具有重要的影响,对叶片的生长过程会有促进作用,植物的叶、茎与叶柄会伸长,但叶绿素含量较低,生长指标和干物质积累也会降低。蓝光对光合作用的调控作用主要集中在气孔的开启、叶绿体的分化以及调节光合作用酶的活性等。POSPA等研究发现在单色蓝光 LED 作用下,叶绿素含量最高,叶片气孔数最多。目前,在复合光谱对植物光
[电源管理]
初步构建<font color='red'>LED</font>光源的植物生长动态补光控制系统
LED灯具的驱动电源设计
   LED灯具 要普及,不但需要大幅度降低成本,更需要解决能效和可靠性的难题,如何解决这些难题,PowerIntegrations市场营销副总裁DougBailey分享了高效高可靠LED灯具设计的五点忠告。   一、不要使用双极型功率器件   DougBailey指出由于双极型功率器件比MOSFET便宜,一般是2美分左右一个,所以一些设计师为了降低LED驱动成本而使用双极型功率器件,这样会严重影响电路的可靠性,因为随着LED驱动电路板温度的提升,双极型器件的有效工作范围会迅速缩小,这样会导致器件在温度上升时故障从而影响LED灯具的可靠性,正确的做法是要选用MOSFET器件,MOSFET器件的使用寿命要远远长于双极型器件。   二
[电源管理]
射频电路印刷电路板的电磁兼容性设计
摘要: 介绍采用Protel99 SE进行射频电路PCB设计的流程。为保证电路性能,在进行射频电路PCB设计时应考虑电磁兼容性,因而重点讨论元器件的布线原则来达到电磁兼容的目的。 随着通信技术的发展,手持无线射频电路技术运用越来越广,如:无线寻呼机、手机、无线PDA等,其中的射频电路的性能指标直接影响整个产品的质量。这些掌上产品的一个最大特点就是小型化,而小型化意味着元器件的密度很大,这使得元器件(包括SMD、SMC、裸片等)的相互干扰十分突出。电磁干扰信号如果处理不当,可能造成整个电路系统的无法正常工作,因此,如何防止和抑制电磁干扰,提高电磁兼容性,就成为设计射频电路PCB时的一个非常重要的课题。同一电路,不同的PC
[模拟电子]
LED投光灯与泛光灯简介及特性对比
  1 什么是 LED 投光灯?   LED投光灯(LEDDow nlight )又叫聚光灯、投射灯、射灯等等,主要用来做建筑装饰照明之用,以及商业空间照明用,装饰性的成份较重,其外型有圆的也有方的,因为一般都得要考虑散热的原因,故而其外形与传统的投光灯还是有一些区别。      2 LED投光灯特性:   目前市面上常用的LED投光灯基本上是选用1W 大功率LED (每个LED 元件 会带有一个由PMMA制成的高 光效 透镜 ,其主要功用是二次分配LED发出的光,也就是二次 光学 ),也有少数公司因为散热技术处理得好,而选用了3W甚至更高 功率 的LED。适合于大型场合投光照明,建筑物等照明。   
[电源管理]
<font color='red'>LED</font>投光灯与泛光灯简介及特性对比
定时器计数LED显示的简单程序
/* 注:该程序主要是如何运用定时器进行计数 体现模块化的子函数,是一个比较浅显的程序 */ #include reg52.h //头文件 #define uchar unsigned char //宏定义 #define uint unsigned int uchar count; //定义全局变量 void display_led() //led显示子函数 { if(count==20) //每隔1S发生变化(晶振为:12MHZ) { count=0; //计数清零,以便下次计数 P2=~P2; //P2的值取反 P2=P2 1; //P2的值左移 P2=~P2; if(P2==0xff) //如果最后一个
[单片机]
高速DSP系统PCB板的可靠性设计
   引言   由于微电子技术的高速发展,由IC芯片构成的数字电子系统朝着规模大、体积小、速度快的方向飞速发展,而且发展速度越来越快。新器件的应用导致现代EDA设计的电路布局密度大,而且信号的频率也很高,随着高速器件的使用,高速DSP(数字信号处理) 系统设计会越来越多,处理高速DSP应用系统中的信号问题成为设计的重要问题,在这种设计中,其特点是系统数据速率、时钟速率和电路密集度都在不断增加,其PCB印制板的设计表现出与低速设计截然不同的行为特点,即出现信号完整性问题、干扰加重问题、电磁兼容性问题等等。   这些问题能导致或者直接带来信号失真,定时错误,不正确数据、地址和控制线以及系统错误甚至系统崩溃,解决不好会严重影
[工业控制]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved