利用ADL5902 TruPwr 检波器来测量RF信号

发布者:CyborgDreamer最新更新时间:2010-12-24 来源: 中电网关键字:检波器  RF信号  ADL5902  TruPwr 手机看文章 扫描二维码
随时随地手机看文章

  电路功能与优势

  该电路使用 ADL5902 TruPwr 检波器测量RF信号的均方根信号强度,信号波峰因素(峰值均值比)在约65 dB的动态范围内变化,工作频率为50 MHz至9 GHz。

  测量结果在12位ADC(AD7466)输出端以串行数据形式提供。在数字域中针对环境温度执行简单的4点系统校准。

  RF检波器与ADC之间的接口很简单,由两个信号调整电阻组成,无有源元件。此外,ADL5902内部2.3 V基准电压为微功耗ADC提供电源和基准电压。AD7466无流水线延迟,可作为只读SAR ADC。

  整个电路实现了约±0.5 dB的温度稳定性。

  显示的数据是针对在-40°C至+85°C温度范围内工作的两个器件。

  通过软件校准的50 MHz至9 GHz RF功率测量系统 (CN0178)

  通过软件校准的RF功率测量系统

通过软件校准的RF功率测量系统 www.elecfans.com

  图1. 通过软件校准的RF功率测量系统

  电路描述

  测量的RF信号施加于ADL5902的输入端,即dB线性rms响应均方根检波器。外部60.4 Ω电阻R3结合ADL5902的较高输入阻抗,确保宽带50 Ω与RF输入匹配。ADL5902以所谓的“测量模式”配置,VSET和VOUT引脚相连。在此模式下,输出电压与输入均方根值的对数成比例。换言之,读数以分贝值直接呈现,每到十倍调整至1.06 V,或者53 mV/dB。

  AD7466 12位ADC的电源电压和基准电压由ADL5902内部2.3 V基准电压源提供。由于AD7466消耗的电流极少(以10 kSPS采样时仅为16 μA),ADL5902的基准电压输出足以向ADC以及由R9、R10、R11、R12组成的温度补偿和均方根精度调整网络供电。

  ADC满量程电压等于2.3 V。最大检波器输出电压(在线性输入范围内工作时)约为3.5 V(参见ADL5902数据手册图6、7、8、12、13及14),因此在驱动AD7466前必须降低0.657倍。这个降低过程通过简单的电阻分压器 R10和R11(1.21 kΩ和2.0 kΩ)来实现。以上数值可实现0.623的实际比例因子,通过建立电阻容差余量确保ADL5902 RF检波器不会过驱ADC。[page]

  显示的是检波器输出电压与输入功率的典型曲线(无输出调整)

显示的是检波器输出电压与输入功率的典型曲线

  图2 显示的是检波器输出电压与输入功率的典型曲线(无输出调整)

  该检波器的传递函数可通过以下公式计算近似值:

  VOUT = SLOPE_DETECTOR × (PIN INTERCEPT)

  其中SLOPE_DETECTOR是检波器斜率,单位为mV/dB;INTERCEPT 是x轴截距,单位为dBm;PIN是输入功率,单位为dBm。

  在ADC输出端,VOUT由ADC输出代码取代,公式可改写为:

  CODE = SLOPE × (PIN INTERCEPT)

  其中 SLOPE 是检波器、调整电阻及ADC的组合斜率,单位为次/dB; PIN 和 INTERCEPT 单位仍为dBm。

  图3显示的是典型检波器输入功率的功率扫描以及在700 MHz输入信号下观察到的ADC输出代码。

  700 MHz下的ADC输出代码及误差与RF输入功率的关系

700 MHz下的ADC输出代码及误差与RF输入功率的关系

  图3. 700 MHz下的ADC输出代码及误差与RF输入功率的关系[page]

  总体斜率和截距随系统的不同而变化,该变化是由RF检波器、调整电阻和ADC传递函数的器件间差异造成的。因此需要系统级校准以确定整个系统的斜率和截距。本应用中,使用4点校准校正RF检波器传递函数内的某些非线性,特别是在低端位置。该4点校准方案产生三个斜率和三个截距校准系数,这些数值在校准后应存储在非易失RAM (NVM)内。

  通过向ADL5902施加四个已知信号电平执行校准,从ADC测量相应的输出代码。选择的校准点应在器件线性工作范围内。本例中,校准点位于0 dBm、-20 dBm、-45 dBm及-58 dBm。

  斜率和截距校准系数通过以下公式计算:

  SLOPE1 = ( CODE _1 – CODE_2)/(PIN_1 — PIN_2)

  INTERCEPT1= CODE_1/(SLOPE_ADC × PIN_1)

  接着使用CODE_2/CODE_3和CODE_3/CODE_4重复计算,分别得出SLOPE2/INTERCEPT2和SLOPE3/INTERCEPT3。六个校准系数应与CODE_1、CODE_2、CODE_3、CODE_4一起存储在NVM内。

  当电路在现场工作时,这些校准系数用于计算未知的输入功率电平PIN,公式如下:

  PIN = (CODE/SLOPE) + INTERCEPT

  为了在电路工作期间获得适当的斜率和截距校准系数,从ADC观察到的CODE必须与CODE_1、CODE_2、CODE_3、CODE_4进行比较。例如,如果来自ADC的CODE在CODE_1与CODE_2之间,则应使用SLOPE1和INTERCEPT1。该步骤还可用于提供欠量程或超量程警告。例如,如果来自ADC的CODE大于CODE_1或小于CODE_4,表示测得的功率在校准范围以外。

  图3还显示了电路传递函数变化与以上直线公式的关系。该误差函数由传递函数边沿弯曲、线性工作范围内的小纹波以及温度漂移造成。误差以dB表示,公式如下:

  误差 (dB) = 计算的RF功率 - 实际输入功率

  = (CODE/SLOPE) + INTERCEPT – PIN_TRUE

  图3还包括了误差与温度的关系曲线。本例中,将在+85°C和?40°C下测得的ADC代码与环境温度下的直线公式进行比较。该方法与现实系统一致,系统校准一般只能在环境温度下进行。

  图4和图5分别显示电路在1 GHz和2.2 GHz下的性能。

1 MHz下的ADC输出代码及误差与RF输入功率的关系

  图4. 1 MHz下的ADC输出代码及误差与RF输入功率的关系[page]

2.2 MHz下的ADC输出代码及误差与RF输入功率的关系

  图5. 2.2 MHz下的ADC输出代码及误差与RF输入功率的关系

  该电路或任何高速电路的性能都高度依赖于适当的PCB布局,包括但不限于电源旁路、受控阻抗线路(如需要)、元件布局、信号布线以及电源层和接地层。(有关PCB布局的详情,请参见 MT-031教程, MT-101 教程 和 高速印刷电路板布局实用指南一文 。)

  测试设置由ADL5902-EVALZ和EVAL-AD7466CBZ*估板组成,两者使用SMA至SMB适配器电缆相连。置于环境室内进行温度测试。*估控制板2(EVAL-CONTROL-BRD2Z)通过测试室门内的插槽连接至AD7466*估板;也就是ADL5902和AD7466*估板位于测试室内部,*估控制板留在外部。控制板用于发送、接收和捕捉来自AD7466*估板的串行数据。ECB2并行端口连接至笔记本电脑。笔记本电脑用于加载、运行和查看ECB2上的AD7466*估软件。ADL5902*估板所需的RF输入信号由Rhode & Schwarz SMT-03 RF信号源提供。使用Agilent E3631A电源为ADL5902供电。有关详情请参见AD7466*估板原理图和ADL5902数据手册。

  常见变化

  对于需要较小RF检波范围的应用,可以使用 AD8363 均方根检波器。AD8363检波范围为50 dB,工作频率最高达6 GHz。对于非均方根检波应用,可使用 AD8317/ AD8318/ AD8319 或 ADL5513 。这些器件提供不同的检波范围,输入频率范围最高达10 GHz(有关详情参见 CN-0150 )。

  AD7466是单通道12位ADC,采用SPI接口。如果终端应用需要多通道ADC,可使用双通道12位 AD7887 。在需要多个ADC和DAC通道的多通道应用中,可使用 AD7294 。除提供四路12位DAC输出外,这款子系统芯片还含有4个非专用ADC通道、2路高端电流检测输入和3个温度传感器。电流和温度测量结果经过数字化转换后,可通过I2C 兼容接口读取。

关键字:检波器  RF信号  ADL5902  TruPwr 引用地址:利用ADL5902 TruPwr 检波器来测量RF信号

上一篇:雪崩光电二极管反向电流的测量
下一篇:混合集成特定频率信号发生器的设计

推荐阅读最新更新时间:2024-03-30 22:13

多通道相参信号测量-- 射频信号测量连载(八)
在MIMO(Multiple-input and Multiple-output)、相控阵以及做科学研究的场合,通常需要对多于4路的高速信号做同时测量。为了满足这种应用,现代的高带宽示波器在硬件和软件上都提供了对于多通道测量的支持能力。 下图展示的是基于Z系列示波器的多通道级联方案以及示波器里的多通道测量软件,目前可以支持最多10台示波器的级联,提供20路同步的带宽高达63GHz的测量通道,或者40路带宽为33GHz测量通道。通过精确的时延和抖动校准,通道间的抖动可以控制在200fs(rms)以内。
[测试测量]
多通道相参<font color='red'>信号</font>测量-- <font color='red'>射频</font><font color='red'>信号</font>测量连载(八)
基于傅里叶变换的MEMS地震检波器设计
  引言   地震检波器是石油、煤炭、金属等矿产及工程地震勘探等数据采集中重要的传感器,它的性能将直接影响到地震资料及技术成果的准确性,目前我国的测试系统技术水平相对落后,检波器体积较大、不便携带,CPU功能有限、功耗较大。本设计采用MEMS检波器对信号进行采集,信号经低功耗主控芯片MSP430F247 完成A/D转换后存储数据,将其进行FFT变换,得到采集信号的频谱特性,可以大大提高勘探的准确性,减小系统的体积、重量、功耗等,实现地质勘探、石油开采等现场作业。   硬件设计   本设计由MEMS检测传感器、MSP430F247控制芯片和波形显示三部分组成,系统框图如图1所示。 MEMS采集地震波并将其转换为电压信号,由MS
[测试测量]
基于傅里叶变换的MEMS地震<font color='red'>检波器</font>设计
利用ADL5902 TruPwr 检波器来测量RF信号
   电路功能与优势   该电路使用 ADL5902 TruPwr 检波器测量RF信号的均方根信号强度,信号波峰因素(峰值均值比)在约65 dB的动态范围内变化,工作频率为50 MHz至9 GHz。   测量结果在12位ADC(AD7466)输出端以串行数据形式提供。在数字域中针对环境温度执行简单的4点系统校准。   RF检波器与ADC之间的接口很简单,由两个信号调整电阻组成,无有源元件。此外,ADL5902内部2.3 V基准电压为微功耗ADC提供电源和基准电压。AD7466无流水线延迟,可作为只读SAR ADC。   整个电路实现了约±0.5 dB的温度稳定性。   显示的数据是针对在-40°C至+85°C温度范围内工
[测试测量]
利用<font color='red'>ADL5902</font> <font color='red'>TruPwr</font> <font color='red'>检波器</font>来测量<font color='red'>RF</font><font color='red'>信号</font>
一种基于单片机的峰值检波器
一、 引言 在低频或超低频的受调信号的检测和处理过程中,当信号通过放大达到一定的强度就必须对其进行检波,以获得需要的信号。如在红外分光测油仪中对红外线的检测,由于调制频率很低,若用由二极管和电阻电容构成的普通峰值检波电路来检波,效果会很差,主要表现在两个方面:第一,若选择RC电路时间常数大一些,则输出信号的波形会好一些,但检波输出之后的信号幅值和检波之前的信号幅值有明显的差距,输出信号幅值明显降低,检波效率变差,同时,信号快变部分的丢失变得严重;第二,若选择RC电路时间常数小一些,则会发现检波前后的信号幅值的差异变小,信号之中的快变分量明显变好,但输出信号的波形明显变差,不利于对信号的A/D变换。以上两种情况如图1所示。
[单片机]
一种基于单片机的峰值<font color='red'>检波器</font>
NI发布全球首台射频矢量信号收发仪
NI PXIe-5644R 射频矢量信号收发仪(VST)是首台软件完全自定义的仪器,它在单个PXI模块化仪器中,结合了矢量信号分析仪、矢量信号发生器与用户可编程的FPGA模块。 工程师们可以将矢量信号收发仪重新定义成新的仪器,或使用NI LabVIEW软件系统设计增强其现有的功能。 新的VST是测试最新无线和移动标准(如802.11ac和LTE)的理想选择。 德克萨斯州奥斯汀市2012年8月7日电 /美通社亚洲/ -- 美国国家仪器公司(National Instruments, 简称 NI)近日发布全球首台 射频矢量信号收发仪 (VST) NI PXIe-5644R,它是全新的软件完全自定义仪器。以软件为中心的架构开拓
[测试测量]
解密RF信号链:特性和性能指标
简介 从历史的角度来看,就在不久之前,也就是20世纪初,支持RF信号链的RF工程学还是一门新兴的学科。如今,RF技术和射频器件深深根植于我们的生活,没有它们,现代文明可能不会存在。生活中有无数非常依赖RF信号链的示例,这将是我们讨论的焦点。 在我们深入探讨之前,我们先来了解RF的实际含义。乍一看,这似乎是一个简单的问题。我们都知道,RF表示射频,此术语的通用定义规定了特定的频率范围:MHz至GHz电磁频谱。但是,如果我们仔细查看其定义并进行比较,就会发现,它们只是对RF频谱的实际边界的定义不同。鉴于我们可能经常在与特定频率无关的其他环境中广泛使用该术语,所以,此术语变得更加令人费解。那么,RF是什么? 通过关注RF的
[模拟电子]
解密<font color='red'>RF</font><font color='red'>信号</font>链:特性和性能指标
100MHz 至 40GHz RMS 功率检波器 具 1dB 准确度和 35dB 动态范围
加利福尼亚州米尔皮塔斯 (MILPITAS, CA) 2016 年 9 月 28 日 凌力尔特公司 (Linear Technology Corporation) 推出高频、宽带和高动态范围 RMS 功率检波器LTC5596,该器件可提供 RF 和微波信号的准确、真实功率测量,这不受调制和波形的影响。LTC5596 以一种易于使用的对数线性 29mV/dB 标度响应 37dBm 至 2dBm 的信号电平,在整个工作温度范围和 200MHz 至前所未有之 30GHz 的 RF 频率范围内的准确度优于 1dB 误差。此外,该器件的响应在该频率范围内具有 1dB 的平坦度。还可采用更宽的 100MHz 至 40GHz 频率范围,不过在
[模拟电子]
100MHz 至 40GHz RMS 功率<font color='red'>检波器</font> 具 1dB 准确度和 35dB 动态范围
覆盖整个信号链 ADI展示RF IC新品
在位与天线之间,ADI是唯一一家覆盖整个信号链的供应商,产品线包括1,000多种高性能RF IC,此外还有世界领先的数据转换器。从功能模块到高度集成的解决方案,ADI的射频设备已能够满足不断扩大的应用范围对于价格、功能、性能和稳定性的要求。 在6月17-22日在加拿大蒙特利尔举办年度IEEE MTT-S国际微波专题研讨会(IMS2012)上,ADI展示了RF IC产品线的最新产品,包括:数据转换器、放大器、锁相环(PLL)直接数字频率合成器(DDS) IC、集成式RF IC、微波技术以及全新软件定义无线电(SDR) FPGA夹层卡(FMC)。针对广泛的应用改进了无线电架构,可让工程师快速地将高速模拟电路和高性能数字电路相结合。
[网络通信]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved