采用QCM传感器的生物芯片检测电路的原理设计

发布者:美梦小狮子最新更新时间:2011-06-07 关键字:QCM传感器  生物芯片  检测电路 手机看文章 扫描二维码
随时随地手机看文章

      本系统原设计为8通道QCM检测,即采用8套完全相同的以MAX913芯片为核心的振荡器,通过2个CD4069反相器反相后分别送到4个差频器74LS74的D端,每一个差频器74LS74内部有2个D触发器。2个6M高精度有源晶振分别经时钟芯片CDCV304后变成8个6M输出信号,分别送到4个差频器74LS74的CLK端。经过4个差频器74LS74差频后的频率信号送到可编程逻辑器件EPM570GT100C3芯片的I/O口。EPM570GT100C3在这里做频率计,通过软件编程来实现。记下的差频频率通过8位数据线送到51单片机AT89S52,同时AT89S52对EPM570GT100C3控制,以选择哪个通道,AT89S52处理后的数据经过232串口送到上位机。   QCM凝血传感器属于非质量响应型传感器,利用石英晶体振荡频率变化对晶体所处体系密度和粘度变化的高度敏感性来检测体系性状的改变。QCM凝血传感器通过红细胞阻抗特性的变化引起传感器的响应来检测红细胞凝集时间和沉降速率。因此,利用基于QCM传感器的生物芯片检测技术,研制了凝血分析仪。

      石英晶体振荡频率对晶体表面质量负载(质量效应)和反应体系物理性状如密度、粘度、电导率等(非质量效应)的改变高度敏感,具有亚ng级的质量检测能力,其灵敏度可达1ng/Hz。

      以一个通道为例来进行基于QCM传感器的生物芯片检测电路的设计,由于一个通道所使用的逻辑门比较少,因此选择可编程逻辑器件EPM7128LC84-10。图1所示是系统总体设计框图。

图1 系统设计总体框图
 

硬件设计

1、石英晶体振荡及差频电路

      为了保证QCM在滴入生物试剂后能振荡起来,必须采用一套比较特殊的自激振荡器电路,普通的用反相器构成的振荡器电路不易起振,自激振荡器通常是由基本放大电路、正反馈网络和选频网络三部分组成的。在石英晶体振荡电路中,石英晶体作为正反馈网络的主要组成部分,也是一种选频网络,只有在石英晶体振荡器的固有谐振频率下才能满足条件。根据这一原理,采用以MAX913芯片为核心的振荡器,它的输出是TTL电平,便于单片机或可编程逻辑器件的信号采集。测量用QCM振荡电路输出的方波信号送入差频器74LS74的D端,参考用高精度6M晶振输出的方波信号送入差频器74LS74的CLK端,得到的差频信号送入可编程逻辑器件进行计数,采用差频的目的是为了降低输入到可编程逻辑器件EPM7128的频率。石英晶体振荡及差频电路如图2所示。

图2 石英晶体振荡及差频电路

2、EPM7128和AT89S52的控制电路

      经过差频器74LS74后的差频信号,从74LS74的5脚输出送到可编程逻辑器件EPM7128的6脚I/O口上。由于可编程逻辑器件引脚比较灵活,又有可擦除可编程的能力,因此对原设计进行修改时,只需要修改原设计文件再对可编程逻辑器件芯片重新编程即可,而不需要修改电路布局,更不需要重新加工印刷线路板,这就大大提高了系统的灵活性,且具有很好的保密性,在这里通过软件编程将其设计为频率计。在开始测量时,上位机通过串口给51单片机AT89S52发出命令,AT89S52先给EPM7128的22脚一个RST复位命令,使EPM7128复位后开始工作计频,频率测量计时时间为100ms,计时结束后,EPM7128的46脚发出中断信号送给AT89S52的外中断0口(INT0),单片机接收到中断信号后从P1口的P10~P12给EPM7128发出3个选择信号SEL0~SEL2。由于在EPM7128设计的是32位计数器,而51单片机是8位机,因此需要4次分时处理32位数据信号,由选择信号SEL0~SEL2来控制。最终从EPM7128输出8位数据信号到AT89S52的P0数据口,经单片机处理后通过串口发到上位机进行最后的数据处理和图形界面显示。此部分硬件电路图如图3所示。

图3 可编程逻辑器件EPM7128和51单片机AT89S52的控制电路[page]

       AT89S52的14、15脚外接晶振和电容组成单片机的振荡电路,4脚是复位端,由IPM810控制,IPM810具备上电复位、手动复位及欠压复位功能。AT89S52使用PLCC44脚封装的贴片器件,利用单片机AT89S52的P1口和复位口进行在线编程,使用at89isp软件在线编程,进行程序的烧写。

      EPM7128的83脚是全局时钟,外接工作用的时钟信号。该时钟信号可以使用有源晶振来产生,也可以使用无源晶振加振荡器产生。EPM7128的14、71、23、62脚分别是TDI、TDO、TMS、TCK端,是JTAG编程口。EPM7128也是采用在线编程方式进行程序的烧写,采用JTAG在线编程。其他引脚基本上都是I/O口,可根据需要指定。本设计中可编程逻辑器件EPM7128和51单片机AT89S52共有13根线相连,进行数据通讯和控制,其中OUTPUT0~OUTPUT7是数据通讯,SEL0~SEL2是AT89S52对EPM7128的片选控制信号,INT则是EPM7128对AT89S52发出的中断控制信号。

软件设计

  本系统中ALTERA公司可编程逻辑器件EPM7128的内核程序采用Verilog HDL硬件描述语言编写,使用MAX+plusII10.1编译系统或Quartus II 4.2编译系统编译,设计实现了分频、频率计数、数据选择等功能。51单片机AT89S52用C语言和汇编语言混合编程,使用Keil C51编译系统编译。

1、可编程逻辑器件EPM7128的顶层电路

      顶层电路如图4所示,由分频模块、计数模块、数据选择模块组成,分频模块和计数模块采用Verilog HDL硬件描述语言编写,数据选择模块用图形输入方式。12M的振荡信号送到EPM7128的CLK端,经过分频模块后变成10Hz的频率信号给计数模块提供基准时基。AT89S52给EPM7128的RST端提供复位RST信号,使EPM7128复位,开始记录差频器送到EPM7128的CLKX1端的频率信号。记时时间到,EPM7128的输出端INT发出中断信号,通知单片机接收数据。由于计数模块的计时器是32位的,因此通过3个8位的二选一数据选择器,在单片机给出的SEL0~SEL2片选信号控制下,分时选择从EPM7128的输出端OUTPUT7~OUTPUT0输出的8位数据信号到AT89S52的P0数据口。


图4 可编程逻辑器件EPM7128的顶层电路
 

2、可编程逻辑器件EPM7128的分频模块

      分频模块的目的是将可编程逻辑器件EPM7128的83脚输入的12M频率信号,分频成10Hz频率信号给计数模块做基准时钟,即计时时间是100ms。

3、可编程逻辑器件EPM7128的计数模块 由分频模块分频后的10Hz信号送到计数模块,它通过门控电路,加到可以控制开、闭时间的闸门上。被测脉冲加到计数模块中闸门的输入端,开始测频时,先将计数器置0,待门控信号到来后,打开闸门,允许被测脉冲通过,计数器开始计数,直到门控信号结束,闸门关闭,停止计数。因此,当门控信号的周期为1s时,在闸门开通时间1s通过闸门的被测脉冲个数即为该被测信号的频率,为了使上位机获得更多的数据和精度,使门控信号的周期为0.1s。

      以下是可编程逻辑器件EPM7128的计数模块的程序部分代码:

      always @ (posedge CLK_1hz or negedge RST)

      begin

      if (!RST)

      begin

      CNT_EN=0;

      LOAD=1;

      end

      else

      begin

      CNT_EN=~CNT_EN;

      LOAD=~CNT_EN;

      end

[page]

    end

      assign CNT_CLR=~(~CLK_1hz&LOAD);

      ssign INT=LOAD; //使用LOAD的上升沿使单片机中断。

       always @(posedge CLKX or negedge CNT_CLR)

      begin

      if (!CNT_CLR) //当CNT_CLR为低电平到来时,OUT=0;计数器清零

      OUT=0;

      else if (CNT_EN)

      begin

      OUT=OUT+1; //当CLKX的上升沿到来时,计数器加1

      end end

      always @(posedge LOAD) //当锁存信号LOAD的上升沿到来时,执行以下语句

      begin

      FRE=OUT; //将OUT赋值给FRE

      end

      endmodule

      上面给出了可编程逻辑器件EPM7128的计数模块的程序关键代码。CLK_1hz表示门控信号,CLKX表示被测脉冲,RST为系统复位信号,FRE为锁存后的脉冲频率数据,INT为给单片机的中断信号,这几个信号是计数模块中的输入、输出信号。在计数模块中还有几个内部定义的信号,CNT_EN为计数允许信号,CNT_CLR为计数清零信号,LOAD表示锁存信号,OUT表示锁存前的脉冲频率信号。门控信号为10Hz,每两个时钟周期进行一次频率测量,即在每两个时钟周期CLK_1hz内,先到来半个时钟周期的CNT_CLR,用于清零;随后,CNT_EN在一个时钟周期CLK_1hz内有效,进行计数;最后,在后到来的半个时钟周期内,当LOAD的上升沿到来时,锁存计数结果。

4、51单片机AT89S52的程序

      51单片机先初始化定时器、串口及中断设置等,给EPM7128发出复位信号,然后进入大循环程序,等待外中断。当EPM7128计时时间到,给AT89S52的外中断0发出中断信号,AT89S52的程序跳到外中断中,进行数据处理,分别给出选择信号SEL0~SEL2的组合,分时接收EPM7128的数据信号,再通过串口发给上位机。由于所测频率不会超过10MHz,因此只读取24位数据即可。图5是外中断0中断程序流程图。

                                    


 
                                    图5 外中断0中断程序流程图
 

实验结果

      先往流池内加100微升血浆(温浴180S),旋转螺杆到刻度17.0,然后再通过侧面小孔注射进TT凝血酶溶液然后抽出注射器。图6所示是直径6mm血浆凝结实验(血浆+TT凝血酶=100+100μl)。此图是石英晶体采用AT切向,电极为银膜,基频I0MHZ,晶体直径6mm(没有使用差频器),直接将10MHz石英晶体的频率送到可编程逻辑器件计数的结果。

                                    图6 直径6毫米血浆凝结实验
      QCM作为微质量传感器具有结构简单、成本低、振动Q值大、灵敏度高、测量精度可以达到纳克量级的优点,被广泛应用于化学、物理、生物、医学和表面科学等领域中。压电石英晶体传感器用于凝血因子检测具有使用方便、精度高和成本低等优点,有广阔的临床应用和推广前景。

 

关键字:QCM传感器  生物芯片  检测电路 引用地址:采用QCM传感器的生物芯片检测电路的原理设计

上一篇:基于PXI平台的ESP系统性能测试平台
下一篇:一种PC104温度采集卡的设计

推荐阅读最新更新时间:2024-03-30 22:14

基于ZigBee技术的CC2530粮库温湿度检测系统电路设计
  为了增加中心节点的数据存储和处理能力,选用带256KFlash的射频芯片,而且有标准的8051增强型处理器,因此选用CC2530作为本设计的主芯片。CC2530是Zigbee新一代SOC芯片真正的片上系统解决方案,支持IEEE802.15.4标准/ZigBeeRF4CE、Zigbee网络、家居及楼宇自动化、工业测控等领域,也是目前众多ZigBee设备产品中表现最为出众的微处理器之一。   作为片上系统,CC2530集成了增强型高速8051内核处理器,8KB的RAM,多达256KB的闪存以及支持更大的应用;8通道12位A/D转换器、2个USART接口,21个通用的GPIO等;支持2.0~3.6V供电电压,具有3种电源管理模式
[单片机]
基于ZigBee技术的CC2530粮库温湿度<font color='red'>检测</font>系统<font color='red'>电路</font>设计
错误检测与纠正电路的设计方案
针对一些恶劣的电磁环境对随机存储器(RAM) 电路 误码影响的情况,根据纠错编码的基本原理,提出简单实用的能检查两位错误并自动纠正一位错误的EDAC算法;通过VHDL语言编程设计,由 FPGA 器件来实现,并给出仿真结果。 引 言 在一些电磁环境比较恶劣的情况下,一些大规模 集成电路 常常会受到干扰,导致不能正常工作。特别是像RAM这种利用双稳态进行存储的器件,往往会在强干扰下发生翻转,使原来存储的"0"变为"1",或者"1"变为"0",造成的后果往往是很严重的。例如导致一些 控制 程序跑飞,存储的关键数据出错等等。现在,随着芯片集成度的增加,发生错误的可能性也在增大。在一些特定的应用中,这已经成为一个不能忽视的问题。例如在空
[模拟电子]
常用集成电路检测
  1、微处理器集成电路的检测   微处理器集成电路的关键测试引脚是VDD电源端、RESET复位端、XIN晶振信号输入端、XOUT晶振信号输出端及其他各线输入、输出端。在路测量这些关键脚对地的电阻值和电压值,看是否与正常值(可从产品电路图或有关维修资料中查出)相同。不同型号微处理器的RESET复位电压也不相同,有的是低电平复位,即在开机瞬间为低电平,复位后维持高电平;有的是高电平复位,即在开关瞬间为高电平,复位后维持低电平。   2、开关电源集成电路的检测   开关电源集成电路的关键脚电压是电源端(VCC)、激励脉冲输出端、电压检测输入端、电流检测输入端。测量各引脚对地的电压值和电阻值,若与正常值相差较大,在其外围元器件正常的情
[测试测量]
传感器电桥信号的检测电路
传感器电桥信号的检测电路
[模拟电子]
<font color='red'>传感器</font>电桥信号的<font color='red'>检测</font><font color='red'>电路</font>
微型金字塔纳米3D打印微型生物芯片
制作生物芯片是研究疾病的关键技术,现在正在变得更容易一些。新的纳米印刷工艺使用镀金金字塔,LED光源和光化学反应,在单一生物芯片表面印刷比以往更多的有机材料。   该技术使用一系列覆盖在金元素中并安装在原子力显微镜上的聚合物金字塔。这些大小为1平方厘米的阵列包含数以千计的小金字塔,并带有允许光线通过的孔,并确保光线仅通过芯片表面上的特定位置,将精致的有机物质固定在芯片表面而不会损坏它们。        这样基于尖端的光刻的工艺,被广泛认为是利用纳米级3D打印有机材料的最佳方式。但在过去,它们受限于它们一次只能打印一种分子。   现在纽约市立大学高级科学研究中心(ASRC)和亨特学院的研究人员认为他们已经解决了这个问题。   他们正
[半导体设计/制造]
虚拟仪器检测电路模块的解决方案
项目描述 电池测控系统是采用 PCI 硬件和 Labview 软件构成的虚拟仪器。主要由工业计算机,信号调理板,打印机,采集、分析、打印软件,主要完成电源模块各种参数的测量,通过算法提取 17 个指标参数,以判别模块是否合格。 技术指标 1、根据中华人民共和国电子行业军用标准( SJ 20464 97 )测试电源模块 2、设置输入参数、数据采集、分析,由软件自动完成; 3、打印数据报表; 项目挑战 1、输入参数自动配置; 2、负载模块由软件控制; 3、模块接口板卡自主开发; 系统示意图 软件界面
[测试测量]
虚拟仪器<font color='red'>检测</font><font color='red'>电路</font>模块的解决方案
利用差频电路实现微电容式传感器检测电路的温漂抑制
 0引言  电容式传感器是将被测的非电量变化转换为电容量变化的一类传感器,由于它具有灵敏度高、功耗低、温度漂移小等优点,因此广泛应用在压力、湿度、温度和加速度等测量中。MEMS(微电子机械系统)传感器体积小的特点决定了敏感电容器的电容值不可能大,一般为pF量级,而由这些物理量引起的微电容的变化更加微小,一般为fF甚至aF量级。如此小的变化量对检测电路的设计是一个挑战。传统的用分立元件搭制检测电路的方法将无法适应传感器电容不断减小的趋势,因此设计匹配的接口集成电路是十分必要的。常用的低值电容测量电路都是把电容的变化转变为电压或频率。目前大多数国外MEMS传感器厂家采用开关电容电路作为电容信号的接口。这一电路的特点是精度高、可实现与传
[工业控制]
利用差频<font color='red'>电路</font>实现微电容式<font color='red'>传感器</font><font color='red'>检测</font><font color='red'>电路</font>的温漂抑制
生物芯片扫描仪硬件电路设计
摘要:介绍了自动设计的生物芯片扫描仪的硬件电路及其配套软件的设计。核电路以DSP为核心处理器,以单片机为从处理器,并结合CPLD、USB、A/D、D/A等各种芯片构成。生物芯片扫描仪的研究成功,将推动我国生物芯片技术的发展。 关键词:生物芯片扫描仪 生物芯片检测技术 DSP USB2.0 生物芯片技术是20世纪末发展起来的一项新技术。生物芯片是在微小面积上,利用微加工技术,并结合有关的化学合成技术制造而成的一种具有一定分子生物学检验功能的微型器件。分析和解释生物芯片上得到的信息,将在DNA结构与功能之间架起一道桥梁,进而推进生命科学的迅速发展。 目前,荧光标记是生物芯片信息采集中使用最我也最成功的报告标志。检测荧光信号的生物
[应用]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved