手机接收通道噪声系数测试

发布者:喜悦的38号最新更新时间:2011-11-15 关键字:手机接收通道  噪声系数测试  频谱分析仪 手机看文章 扫描二维码
随时随地手机看文章

    针对手机等接收机整机噪声系数测试问题,该文章提出两种简单实用的方法,并分别讨论其优缺点,一种方法是用单独频谱仪进行测试,精度较低;另一种方法是借助噪声测试仪的噪声源来测试,利用冷热负载测试噪声系数的原理,能够得到比较精确的测量结果。

问题提出

    下图是MAXIM 公司TD-SCDMA 手机射频单元参考设计的接收电路,该通道电压增益大于100dB ,与基带单元接口为模拟I/Q 信号,我们需要测量该通道的噪声系数。我们现有的噪声测试仪表是HP8970B ,该仪表所能测量的最低频率为10MHz ,而TD-SCDMA基带I/Q 信号最高有用频率成份为640KHz,显然该仪表不能满足我们的测量需求。





    下面我们将介绍两种测试方案,并讨论其测试精度,最后给出实际测试数据以做对比。

利用频谱仪直接测试



    利用频谱仪直接测量噪声系数的仪器连接如图2 所示,其中点频信号源用于整个通道增益的校准,衰减器有两个作用,一是起到改善前端匹配的作用;二是做通道增益校准使用,因接收机增益往往很高,大于100dB ,而一些信号源不能输出非常弱的信号,配合该衰减器即能完成该功能。

    测量步骤一,先利用信号源产生一个点频信号(一般我们感兴趣的是接收机小信号时的噪声系数,故此时点频信号电平应接近灵敏度电平),频点与本振信号错开一点,这样在基带I/Q 端口可以得到一个点频信号,调节接收机通道增益使I/Q 端点频信号幅度适中,测量接收机输入与输出端的点频信号大小可以求得这时的通道增益,记为G;

    测量步骤二,接步骤一,关闭信号源,保持接收机所有设置不变,用频谱仪测量I/Q 端口在刚才点频频点处的噪声功率谱密度,I 端口记为Pncdensity(dBm/Hz), Q 端口记为Pnsdensity(dBm/Hz) ,则接收通道噪声系数有下式给出:



    上式中kb 表示波尔兹曼常数,F 是噪声系数真值,我们用NF 表示噪声系数的对数值,NF=10lg(F), G表示整个通道增益,T1为当前热力学温度,T0等于290K。假定T1=T0,容易求得NF 的显式表达式如下:



    关于方程2 与方程3 的正确性,我们可以做如下简单推导。先考虑点频情况,设接收机输入端点频信号为:



    现在考虑噪声问题,为简化计算,这儿设当前温度为290K ,即定义噪声系数的标准温度。根据噪声系数的定义,我们可以将系统产生的噪声等效到输入端口,该噪声与资用噪声功率和应等于资用噪声功率的F倍。下面我们用一个窄带平稳高斯过程来描述这两部分噪声之和,设噪声带宽为2B,下面方程给出了该噪声的一些特性:



  比较方程4 与方程7,再参照方程5 式与6 式,我们可以得到接收机输出端的噪声表达式:



  结合方程8 与方程7 可以直接得到方程2,结合方程9 与方程7 可以直接得到方程3,注意I 与Q 端口噪声带宽为B,是射频噪声带宽的一半。下图比较形象地给出了噪声变换过程:





  从上图还可以看到,在数值上,输出同相噪声功率谱密度与输入同相噪声谱密度除通道增益与噪声系数外,相差6dB,这说明输入同相噪声上下两边带是严格相关的;输出正交噪声谱密度与输入正交相噪声谱密度相比除通道增益与噪声系数外,同样也有6dB 增益。

借助标准噪声源精确测试

  这里介绍的方法即Y 系数法,也称为冷热负载法,一般噪声系数测试仪表就采用该方法,但仪表有它自身的限制,如HP8970B 所能测量的最低频率为10MHz,待测件最大增益80dB。我们这里采用通用频谱仪来检测待测件输出噪声大小,从而避开了噪声测试仪表在噪声检测上的限制,再根据Y 系数法原理计算出待测件噪声系数。下图给出了该方法的仪器配置图:



  测量步骤一,先将接收机接到点频信号源侧,利用信号源产生一个灵敏度电平的点频信号(因为我们通常感兴趣的是接收机小信号时的噪声系数),频点与本振信号错开一点,这样在基带I/Q 端口可以得到一个点频信号。调节接收机通道增益使I/Q 端点频信号幅度适中;

  测量步骤二,接步骤一,保持接收机所有设置不变,将接收机接到噪声源一侧,噪声源置为冷态,设冷态噪声温度为T1,用频谱仪测量I 端口噪声功率谱密度(I与Q有相同的性质,故此处仅提及I 端口),记为Poc(dBm/Hz);

  测量步骤三,接步骤二,保持接收机设置不变,噪声源置为热态,设噪声温度为T2,用频谱仪测量I 端口噪声功率谱密度,记为Poh(dBm/Hz);

  所谓Y 系数法中的Y 即测量步骤三与测量步骤二两测量值的比值:



  设接收机等效噪声温度为Te。我们可以用冷态源噪声温度,热态源噪声温度,接收机等效噪声温度来表示系数Y,如下式:



  设噪声头超噪比为ENR,标准噪声温度为T0(290K ),根据超噪比定义可得到下面等式:



  根据噪声系数与等效噪声温度定义可以得到下式:



  联立方程11,12,13,可以容易求得噪声系数关于ENR、Y、T1、T0 的函数关系,其对数表达形式如下:



  一般冷态噪声温度接近标准噪声温度,在对精度要求不高时,可以认为T1=T0,上式可以简化为:



  上式中Y 由方程10 给出,是间接测量值,ENR 由噪声头给出。根据该等式可以方便求出接收机噪声系数。

两种测试方法的优缺点比较

  利用方法一测试MAXIM 公司TD-SCDMA 手机接收通道噪声系数,先利用点频信号测量通道增益,输入点频信号为-105.6dBm ,频点2015.95MHz,MAX2392 的LNA 与混频器置为高增益高线性状态,VGC 电压调到2.63V,本振频点置为2015.8MHz ,这时我们在I 输出端测到-3.5dBm 的150KHz 点频信号,从而计算出整个通道增益为102.1dB 。现在关掉输入的点频信号,利用频谱仪测量I 端口在150KHz 频点处噪声功率谱密度,我们用的频谱仪是RS 公司FSEA,为使噪声测量结果精确,检波方式设为“SAMPLE”, 然后再利用“Maker Noise ”功能测试。我们测到噪声功率谱密度为-63.5dBm/Hz 。根据方程2 可以容易计算出整个通道的噪声系数为:



  利用方法二测试MAXIM 公司TD-SCDMA 手机接收通道噪声系数,接上面的测量,保持MAX2392 工作状态不变。在上面测试中得到的I 端口150KHz 频点处噪声功率谱密度即为冷态噪声源时的噪声功率谱密度,现在仅需测热态时该频点处噪声功率谱密度。这儿我们用的是Noise/Com 公司的NC346A 噪声头,其在2G 频点处超噪比ENR=5.91dB。利用与方法一中同样的测试方法,我们测到热态时在150KHz 处噪声功率谱密度为60.4dBm。根据方程10 可以计算出Y 系数为3.1dB ,再根据方程15 我们可以计算出整个通道的噪声系数为:



  比较上面两种方法得到的测量结果,仅差0.3dB,测试结果是比较理想的。这两种方法中,第二种测试方法更精确一些,原因是频谱仪在测量噪声功率谱密度时可能会有误差,频谱仪的中频滤波器的信号带宽与噪声带宽一般不等,有的频谱仪会给出一个修正值,有的则没有,如我们没有考虑该修正值,或仪表在读数上未做修正,则我们测到的噪声功率谱密度就可能有1dB 左右偏差,导致最终噪声系数1dB 左右偏差。如按第二种方法测试,因为我们仅需知道冷热噪声源时功率谱密度比值,即便在冷热两种噪声源时测到的功率谱密度有偏差,其比值依然是正确的,从而提高了噪声的测量精度。
关键字:手机接收通道  噪声系数测试  频谱分析仪 引用地址:手机接收通道噪声系数测试

上一篇:测量并抑制存储器件中的软误差
下一篇:频宽、取样速率及奈奎斯特定理

推荐阅读最新更新时间:2024-03-30 22:20

频谱分析仪测量谐波的方法
无线电工程应用不仅要对射频信号的谐波进行测量,有时还要确定音频信号的总谐波失真(THD)。射频信号可能是已调信号或连续波信号。这些信号可以由有漂移的压控振荡器(VCO)或稳定的锁相振荡器或合成器产生。现代频谱分析仪能利用本文中所述方法来进行这些测量。本文还将讨论如何断定在分析设备或被测器件(DUT)中是否产生谐波、对不同类型信号的最佳测量方法以及对数平均、电压单位和均方根值(ms)计算的利用。   我们这里所处理的所有信号均假定为周期信号,亦即它们的电压随时间的变化特性是重复的。傅里叶变换分析可以将任何重复信号表示为若干正弦波之和。按一定目的产生的频率最低的正弦波称为基频信号。其它正弦波则称为谐波信号。可以利用频谱分析仪来测量
[测试测量]
<font color='red'>频谱分析仪</font>测量谐波的方法
“射频万用表”频谱分析仪的七大性能指标解析
频谱分析仪是一种用于在频域中显示信号幅度的仪器。射频领域被称为“射频万用表”, 频谱分析仪可用来进行通用频谱分析、 射频记录和回放 、 EMC 一致性测试和故障排除 、频谱监测、无线电定位和干扰搜寻 等,使用十分广泛。 很多刚入门的工程师在选型时不知道该着重关注哪些指标,下面安泰测试针对频谱分析仪的七大性能指标进行讲解,希望对大家有所帮助: 1、输入频率范围 它指的是频谱分析仪可以正常工作的最大频率范围。 该范围的上限和下限由HZ表示,HZ由扫描本地振荡器的频率范围确定。 现代频谱分析仪的频率范围通常从低频段到射频频段,甚至微波频段,如1KHz到4GHz。 这里的频率是指中心频率,它是显示频谱宽度中心的频率。 2、分辨
[测试测量]
“射频万用表”<font color='red'>频谱分析仪</font>的七大性能指标解析
教你如何选择频谱分析仪
频谱分析仪是一种多用途的电子测量仪器,它主要是测量信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数。长期的使用频谱分析仪,会由于种种因素出现故障的发生。那么接下来跟着安泰测试来选择频谱分析仪。 1.怎样设置才能获得频谱仪最佳的灵敏度,以方便观测小信号 首先根据被测小信号的大小设置相应的中心频率、扫宽(SPAN)以及参考电平; 然后在频谱分析仪没有出现过载提示的情况下逐步降低衰减值;如果此时被测小信号的信噪比小于15dB,就逐步减小RBW,RBW越小,频谱分析仪的底噪越低,灵敏度就越高。 如果频谱分析仪有预放,打开预放。预放开,可以提高频谱分析仪的噪声系数,从而提高了灵敏度。对于信噪比不高的小信号,可以减少VBW或
[测试测量]
教你如何选择<font color='red'>频谱分析仪</font>
罗德与施瓦茨推新型射频测试仪器 入门级三合一
慕尼黑——R&S FPC1500是世界上第一台包括一个带内部VSWR电桥的单端口矢量网络分析仪、一个独立的CW信号源和一个跟踪源的频谱分析仪。卓越的品质和创新没有带来价格的提升。尽管是经济型仪器,R&S FPC1500与高端的罗德与施瓦茨仪器具有相同的质量标准,提供可靠的RF性能和全面的未来发展。 频谱分析仪 R&S FPC1500基本型号的频率范围为5 kHz至1 GHz。通过选件可升级至3 GHz的高频率范围,也可以通过选件获得其他测量应用功能。选件功能在输入密码完毕时立即激活,且不需要升级校准。 当测量极其微弱信号的时候需要更高的灵敏度,R&S FPC1500的本底噪声为-150 dBm(典型值),通过激活选件前
[测试测量]
罗德与施瓦茨将手持式频率范围扩展至 44 GHz
R&S FPH 手持式频谱分析仪的全新基础型号提供高达 44 GHz 的频谱分析能力。R&S FPH结合了台式仪器的功能及手持仪器的轻巧便携性,并具备直观的功能,便于随时进行快速而简单的高性能测量。 近日,罗德与施瓦茨公司(以下简称“R&S”公司)在其广受欢迎的 R&S FPH手持式频谱分析仪系列现有频率范围基础上(即5 kHz 到 6、13.6 和 26.5 GHz),提供了高达 44 GHz 测量频率的全新基础型号。此外,还新推出了三款跟踪源,频率范围可以达到13.6、26.5 和 44 GHz 。 R&S FPH 是业界首款带电容式触摸屏的手持式频谱仪,在外场与实验室的测量中都体现出稳定的射频性能和高精度。大按
[测试测量]
罗德与施瓦茨将手持式频率范围扩展至 44 GHz
什么是频谱分析仪
什么是频谱分析仪 频谱分析仪的英文全称:Spectrum Analyzer 频谱分析仪系统主要的功能是在频域里显示输入信号的频谱特性.频谱分析仪依信号处理方式的不同,一般有两种类型;即时频谱分析仪(Real-Time Spectrum Analyzer)与扫描调谐频谱分析仪(Sweep-Tuned Spectrum Analyzer).即时频率分析仪的功能为在同一瞬间显示频域的信号振幅,其工作原理是针对不同的频率信号而有相对应的滤波器与检知器(Detector),再经由同步的多工扫描器将信号传送到CRT萤幕上,其优点是能显示周期性杂散波(Periodic Random Waves)的瞬间反应,其缺点是价昂且性能受限於频宽范
[模拟电子]
N9038A是德频谱分析仪维修--GPIB线连接不上故障案例
一、仪器型号 是德N9038A频谱分析仪 二、故障现象 仪器电脑主机与接收机通过GPIB线连接不上 三、检测维修 一般遇到无法连接这种故障首先建议客户更换设备排除是仪器故障还是电脑主机故障,客户反馈更换仪器设备后连接正常,证明确实是仪器出故障。下面就开始拆机检测,仪器通电开机首先对仪器执行内部自检操作出现报错现象。根据该仪器工作原理出现此类故障可能是控制电路部分以及主板某部分出现故障。 经检测,仪器接口控制板损坏,造成不连机;衰减器损坏,造成自检报错 四、维修处理 更换接口控制板损坏组件,更换衰减器;检测测试仪器联机正常自检报错消失。
[测试测量]
N9038A是德<font color='red'>频谱分析仪</font>维修--GPIB线连接不上故障案例
泰克RSA6114A实时频谱分析仪助力著名X射线自由电子激光研制工作
迅速分析各个微波脉冲,加速X射线激光研发 俄勒冈州毕佛顿, 2007年9月18日讯 – 全球领先的测试测量和监测仪器供应商泰克公司(NYSE: TEK)日前宣布,泰克RSA6114A实时频谱分析仪已被日本的X射线自由电子激光(XFEL)项目采用。XFEL是受日本政府认可的国家级关键技术,由日本同步辐射研究院(JASRI)和RIKEN共同开发。这些研究机构已经为XFEL建立了SPring-8联合项目。通过支持速调管真空管放大器的稳定运行,泰克RSA6114A实时频谱分析仪将促进SPring-8 X射线激光的研制工作。 目前联合项目正在研制一种强大的X射线激光用以考察材料的详细结构和瞬态行为。为开发X射线激光技术,联合项目建立了
[焦点新闻]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved