数字可编程增益放大器(DPGA)放大或减弱模拟信号,可最大限度地扩大模数转换器(ADC)的动态范围。大多数单片DPGA都在运算放大器的反馈环路中使用了多路复用乘法数模转换器(DAC),如Maxim LTC6910和National Semiconductor LPM8100,以便DAC的输入代码可以设置放大器的闭环增益。不使用单片DPGA,而是使用两个运算放大器和三个模拟开关来构建基于负时间常数的DPGA。
无疑,工程师对e–t/RC 收敛指数非常熟悉,其中RC电路内的电容器以渐进方式放电到零。对于输入VIN,在t = T = loge(2)RC时V = VIN/2,在t = 2T时V = VIN /4,在t =3T时V = VIN /8,依此类推。
当用一个合成负电阻的有源电路代替R时,工程师可能不太熟悉同一RC拓扑结构的特性,不过同样简单。当用–R代替电阻R时,可以创建一个正RC时间常数。这样就创建了一个发散指数VINe+t/RC。
该波形并非收敛为零,而是在理论上发散为无穷大,当t=T时V=2VIN,当t=2T时V=4VIN,当t=3T时V=8VIN,依此类推。因此,在启动“负放电”之后只须等待适当的时间(t = log2(V/VIN),就可放大VIN。发散指数和负时间常数是图2中的电路的核心概念。
可用由微控制器或其他电路生成的脉冲宽度调制(PWM)信号对放大器增益进行编程。当PWM信号到达逻辑0时,采样保持电容器C1充电至VIN。当PWM信号循环到逻辑1时,运算放大器A1驱动R1C1正反馈环路,创建一个负时间常数。
只要PWM信号保持在逻辑1,导致C1充电的发散指数的上升就会继续。这将创建为VOUT(t) = VIN2(t/10?s + .5) 的净电压增益。因此,增益= 2(t/10?s + .5),log(增益) = 3 + 0.6 dB/?s。在放大周期结束时,PWM返回到逻辑0,放大器A2捕捉并保持放大的VIN。
增益和时序之间的对数关系可提供卓越的增益分辨率,即使是在PWM信号只有8位分辨率,而且其可编程增益在宽范围情况下,也优于0.2 dB/LSB_step。
指数信号的时序精度和可重复性、ADC采样、抖动,以及RC时间常数稳定性都会限制放大器的增益编程精度。在图2中,1 ns时序误差或抖动都会导致0.007%的增益编程误差。幸运的是,微控制器和数据采集系统中几乎普遍包括可编程的定时器/计数器硬件,这通常便于以数字方式生成可重复的PWM控制信号。
关键字:负时间常数 增益放大器
引用地址:
构建具有负时间常数的数字可编程增益放大器
推荐阅读最新更新时间:2024-03-30 22:21
低噪声增益可选放大器
数据采集、传感器信号调理以及输入信号变化范围较大的其他应用要求采用增益可选放大器。传统的增益可选放大器在反馈环路中用开关将电阻连接至反相输入,但开关电阻会降低放大器的噪声性能,增加反相输入上的电容,并提高非线性增益误差。在使用低噪声放大器时,增加的噪声和电容,非线性增益误差,这些都将影响精密应用中的精度。
图1. 利用ADA4896-2和ADG633构建低噪声增益可选放大器来驱动低阻负载
图1所示增益可选放大器采用了一种创新的开关技术,可以保持ADA4896-2的1nV/√Hz噪声性能,同时降低非线性增益误差。利用这种技术,用户可以选择电容最小的开关来使电路的带宽最大化。
通过ADG633三路S
[模拟电子]
美国国家半导体推出全新DVGA(可变增益放大器)
双通道和四通道DVGA结合了高通道数和卓越的高频线性 二零一一年八月十一日 -- 中国讯 -- 美国国家半导体公司(National Semiconductor Corp .)(美国纽约证券交易所上市代码:NSM)宣布推出两款四通道和双通道数字可变增益放大器(DVGA),以实现更高性能的宽带无线系统。四通道LMH6522和双通道LMH6521 DVGA在较宽的频率范围内提供了极佳的线性性能,因此也成为了最具挑战性的多通道宽带无线系统的一个理想解决方案。其目标应用包括中频(IF)采样接收机、I/Q数字预失真(DPD)信号路径和宽带直接转换无线电,可广泛应用于多载波GSM、TD-SCDMA、W-CDMA和LTE无线基站。 在如今无
[网络通信]
工程师技术分享:运算放大器增益误差设计指南
选择合适的 运算放大器 (op amp) 时,首先要做的便是确定系统通过该放大器进行传输的信号带宽。一旦确定下来这一点,便可以开始寻找正确的放大器。来自高速设计专家的告诫是:应该避免使用相对应用而言速度过快的模拟器件。因此,要尽量选择一种闭环带宽稍高于信号最大频率的放大器。 它听起来好像是一种较好的产品选择方案,但是这种设计方法将可能会带来灾难性的后果。实验室中,可能会发现当将应用最大频率的输入正弦波信号置入系统时,放大器的输出信号并未穿过希望的全刻度模拟范围。信号增益远低于预期。放大器的转换速率等级超出所需。另外,您并没有驱动放大器输出至电源轨中。那到底是在哪里出错了呢? 不要再反复检查电阻值了!在 增益 单元中设计某个 放大
[电源管理]
程控增益放大器和自动调整增益放大器的设计
在很多 信号采集 系统中都需要进行量程切换, 最常用的方法就是调整放大器的增益; 在很多场合需要用软件来控制放大器增益, 或者放大器能自动调整增益。结合一些新近推出的集成芯片, 给出了实现这两种放大器的一些实用电路。
[模拟电子]
IF/RF可变增益放大器MAX2063
IF/RF可变增益放大器(VGA) MAX2063。该款易于控制的器件具有优异的VGA性能、完全的编程特性和极高的元件集成度。MAX2063提供独特的“速射”增益选择,每通道可选择四种定制的衰减状态。此外,器件还具有25ns的快速数字切换和极低的数字VGA过冲/下冲幅度。该器件是GSM/EDGE、CDMA、WCDMA、LTE和WiMAX?等2.5G、3G和4G无线基础设施收发器中“快速响应”自动增益控制(AGC)电路的理想选择。 MAX2063可以用作IF或RF通用VGA,与工作在50MHz至1000MHz频率范围的50Ω系统直接连接。由于每通道中各级电路具有各自的RF输入和RF输出,因此MAX2063可以经过配置,优化噪声
[模拟电子]
TI推出业内速度最快的16位ADC、14位ADC和数字可变增益放大器
日前,德州仪器 (TI) 宣布推出业界首款16位1 GSPS模数转换器 (ADC) ADS54J60,这也是业内首例在1 GSPS 采样速率下实现超过70 dBFS信噪比 (SNR) 的模数转换器。另外,TI 还推出了最高密度的四通道14位500 MSPS 数转换器 ADS54J54。为了优化信号链,TI 的新型LMH6401 4.5 GHz全差分数字可变增益放大器 (DVGA) 提供了最宽的带宽和DC耦合,并实现了低频和高频信号采集,此外,还不受 AC 耦合型系统中使用的平衡-不平衡变压器带来的限制。这些模数转换器与放大器配合工作,可在国防、航天、测试与测量、以及通信基础设施等应用中提供最高的性能、最低的功耗并节省空间。
[电源管理]
放大器有限增益的影响
对大多数运算放大器而言,其关键参数是开环增益。为了保证稳定,必须限制开环增益的带宽。为此,常在低频端引进一个实极点,使增益每倍频程下降6dB。 图(a)所示为一个典型的开环增益曲线。它有两个转折点,低频处的转折点是由频率补偿引入的实极点产生的。输出相位滞后角在转折频率处为45°,当频率升高时,它趋近于90°,幅频特性以每倍频程6dB的速度下降。
放大器的另一个转折频率在l00kHz附近。在这个极点以上,增益以每倍频程12dB的速度下降,相移又增加了45°,随频率增加趋近于180°。图(b)所示为相频特性曲线。
大多数运算放大器的内部已备有频率补偿网络,它的参数保证在最坏情况下,对应于电压跟随器的接法,仍可稳定地
[模拟电子]
TD-SCDMA干线放大器的增益调整设置
TD-SCDMA干线放大器在工程开通时要在保证链路平衡的基础上合理掌握增益调整和基站影响的关系,正确调试干线放大器,在TD-SCDMA网络大规模建设时干线放大器也将发挥其最大的作用。 随着TD-SCDMA网络的建设,大量的TD-SCDMA室内覆盖系统随之建设。高质量的TD-SCDMA室内覆盖系统对于提升TD-SCDMA整体网络质量、提高用户对新的3G网络的认同感对移动运营商尤为重要。 TD-SCDMA网络工作在2GHz频段,电磁波的无线链路传播损耗以及射频电缆的传播损耗相对较大,TD-SCDMA室内覆盖必须开发大功率的有源放大设备解决覆盖功率不足的问题。干线放大器在2G移动通信系统网络优化覆盖中发挥了重要的作用,是解决室内覆盖
[模拟电子]