虚拟仪器的数字阵列天线测试

发布者:科技飞翔最新更新时间:2012-02-02 来源: eefocus关键字:虚拟仪器  数字阵列  天线测试 手机看文章 扫描二维码
随时随地手机看文章

0 引言

LabvlEw是实验室虚拟仪器集成环境(laboratory virtual instrument engineering workbench)的简称,是美国NI公司的创新软件产品,也是目前应用最广、发展最快、功能最强的图形化软件集成开发环境。LabVIEW作为软件化仪表在数据采集及控制、数据分析和显示等方面具有强大的功能,其支持的信号接口卡丰富,用户能够快捷方便地对各个输入数据参数进行即时设置和调试,程序运行结果也十分直观。数字天线阵列是天线和数字信号处理技术结合的产物,它具有工作方式灵活、抗干扰性能卓越和超角分辨等众多优点,因此其在军事和民用领域都得到了广泛的应用。一般阵列天线校正和波瓣测量需要采集大量的数据,进行多次循环计算,工作效率低且动用的仪器设备众多。

因此在数字阵列天线测试中,LabVIEW的优势十分明显,它可以实现对大量通道信号同时采集和实时监控、分析等工作,这样既节省了资源,也简化了测试过程提高了工作效率。

1 系统简介

在系统接收端,接收天线各单元通道将接收到的信号通过接收前端放大后,直接送到数字接收机和采集计算机。由数据采集卡对接收机输出的I/Q信号和天线方位等机械参数、触发信号进行采集和控制,并最终在终端控制处理计算机上计算出天线波瓣图,系统工作过程如图1所示。

系统图

在测试过程中,我们采用LabVIEIW设计用户图形界面,负责通道监视和数据采集。LabVIEW中数据采集系统由采集硬件、硬件驱动程序和数据采集函数等组成。安装的硬件驱动程序包含了硬件可以接受的操作命令,在使用这些硬件之前,根据需要进行硬件和软件设置,以满足采样频率等方面的要求。在本系统中我们采用NI公司的PCI-6534采集卡,LabVIEW通过控制数据采集卡对接收机输出的IQ信号以及其它机械参数等进行采集。在完成采集卡的设置后,我们就可以进行采集和通道监控等工作了。

图二:通道监视VI的前面板

2 通道监视

由于整个系统由多个通道构成,为了保证在校正过程中各个通道处于正常工作状态,在校正开始前我们需要对通道进行检查。同时,由于本系统工作频带位于民用通信频带内,为了避免民用通信信号对校正过程的影响我们也需要对外界电磁信号进行监视。因此,通道监视是确保校正顺利进行的重要一部。图2是通道监视VI的前面板界面,图3是通道监视Ⅵ的框图。在前面板(图2)中使用了Dialog Tab Control控件,使我们可以在多通道同时监控和单通道观测间切换。在该VI中,除了可以直观监视各个通道是否正常工作外,我们还可以测量、比较各个通道功率增益的差异并完成对通道时域信号幅度、IQ信号正交度等信息的监控。

图三:通道监视VI的框图

在通道监视Ⅵ的框图(图3)中,我们通过COM组件法在后台调用了MATLAB数学处理软件。它完成的主要任务是将采集卡输出的多个通道串行数据流按通道进行分组,并根据需要进行数制转换和数据分析等工作,这些功能加快了程序运行速度,提高了该Ⅵ数据处的能力和灵活性。

3 外校正数据采集

在确定各个通道都处于正常工作状态,并且没有外界电磁干扰的情况下,就可以开始进行外校正了。

3.1 串口数据采集子Ⅵ

为了完成外校正,在数据采集过程中必须实时获取天线机械旋转的方位。这里我们通过串口来采集天线机械旋转的码盘值,获得天线实时旋转方位。

其中的串口采用的是RS232,D型口,其中利用2、3和5三跟针脚,一个是发送、一个是接收,一个是接地。在Labview中采用的visa,首先是进行串口设置,设置串口号,波特率,其中特别注意的是要安装visa驱动包,只有安装了这个驱动包,串口才可以选择。


图4和图5是串口数据采集子VI及其框图中(串口采集部分)。配合定北仪测量结果,通过该子VI我们可以获得天线机械旋转的实时码盘值、天线方位和法线方位。

3.2 数据采集VI

数据采集是测试过程中最基本也是最重要的一个环节,它的前面板如图6。在数据采集Ⅵ中我们不但可以控制采集的起止还可以通过在前面板修改参数控制采集数据的长度,从几十千到几十兆都可以实现连续采集。


数据采集VI

3.3 外校正数据采集VI

在有了串口数据采集子VI,并结合数据采集VI,通过合理控制数据采集长度,我们就可以最终完成外校正数据采集。图7是外校正数据采集VI的前面板,在这里我们可以指定外校正测试的频率和数据的存储路径,并可以实时监视天线机械旋转的码盘值和天线的法向指向,并根据实际需要随时停止数据的采集。图8是外校正数据采集VI的框图。

4 结束语

通过以上几个主要程序和其他一些辅助程序,我们完成了在天线测试过程中从通道监视到最后外校正数据采集一个完整的过程。本系统充分利用了LabVIEW在软件化测量编程、数据采集方面的优势,提高了工作效率,缩短了工作时间,并经过了实践的验证。

关键字:虚拟仪器  数字阵列  天线测试 引用地址:虚拟仪器的数字阵列天线测试

上一篇:基于LabVIEW的战斗机的应用
下一篇:基于Labview的光伏发电数据监测系统的设计

推荐阅读最新更新时间:2024-03-30 22:23

一种基于PCI总线和DSP技术的虚拟仪器设计
  传统的虚拟仪器由一块基于PCI总线的直接利用A/D和D/A芯片构成的数据采集板卡和相应的软件组成,但随着计算机网络技术的迅速发展,越来越多的数据需要由计算机处理、存储和传输,由于通用计算机本身的特点,它们通常不适于进行实时性要求很高的数字信号处理,因此这种虚拟仪器不能满足现实应用对数据实时处理能力、数据传输能力以及数据管理能力所提出的越来越高的要求。   与此同时,随着数字信号处理器(DSP)性价比的不断提高,其应用领域飞速扩展,从而使基于PCI总线和DSP技术的新型虚拟仪器应运而生。   系统的基本框架   笔者设计的基于PCI总线和DSP技术的虚拟仪器的基本框架如图1所示。   整个系统是基于模块化的设计理念来实
[嵌入式]
介绍一种测试天线噪声温度的新型方法
噪声温度并非是每个天线必测的指标,但是对于诸如卫星通信地面站接收天线等大尺寸天线,噪声温度尤为重要,因为这决定了整个接收机系统的等效噪声温度,继而决定了系统的接收灵敏度。 对于这类天线,其噪声温度并不是一成不变的,而是随着天线的俯仰角变化的,所以测试其噪声温度时,往往是在一定俯仰角时测定的。本文介绍了一种测试天线噪声温度的新型方法,与传统测试方法的区别在于,该方法可以修正仪表本身噪声系数对测试结果的影响,所以具有更高的精度。 噪声温度与噪声因子是描述同一物理特性的不同参数,二者是一一对应的,关系如下: 其中,F为噪声因子(以对数形式表示,一般称为噪声系数),T为等效噪声温度,T0为常数290K。 对于两端口器件噪声系数
[测试测量]
介绍一种<font color='red'>测试</font><font color='red'>天线</font>噪声温度的新型方法
利用NI虚拟仪器构建的电机监控系统电路设计
  为了提高开关磁阻电机控制系统的实用性和可靠性,利用 NI虚拟仪器构建了监控系统,可以实时监测和调整电机运行时的重要参数。该方案以装有数据采集卡的 PC机和 DSP作为硬件基础,利用 LabVIEW软件将各类传感器传送的信号进行实时处 理,同时记录和显示各项数据,然后再利用相应的算法完成对数据的分析。数据是采用PCI-6143数据采集卡,并以LabVIEW8.6为开发环境编写程序而获取的。考虑到该系统可能在比较恶劣的工作环境下使用,为了更安全有效地实现实时控制,同时利用DSP 作为PC 机的备用处理器。实验用样机是一台8/6极,功率为150 W 的SRM。   位置信号检测   在非常恶劣的条件下工作时,转子位置传感器可能失
[测试测量]
利用NI<font color='red'>虚拟仪器</font>构建的电机监控系统电路设计
卫星定位有源天线性能测试接口转换装置
卫星有源接收天线由天线和所带低噪声放大器两部分组成,在接收天线性能测试过程中,受天线自身所带放大器增益的限制,其输出的信号功率无法达到后端测试设备最低输入灵敏度的要求,存在接收天线与测试接收机接口会出现不匹配的问题。在天线与测试设备之间必须增加一个接口转换装置才能有效地完成天线 性能的测试。 1 有源天线性能测试 一般无源天线测试的基本原理框图如图1所示。 随着卫星定位系统应用领域的扩大,许多情况下要求必须对其接收天线的性能进行测试。 在微波暗室完成卫星接收天线性能的测试,标准天线只能作为发射天线,因为卫星有源天线内含有低噪声放大器,其工作模式为纯接收方式。发射与接收之间的间距是固定的。用于反映信号场强大小的接
[测试测量]
卫星定位有源<font color='red'>天线</font>性能<font color='red'>测试</font>接口转换装置
详解虚拟仪器的校准
  1 引言   2 虚拟仪器的构成   传统测试仪器主要由输入/输出部分,电源部分,仪器内部核心,显示控制单元等组成。对于虚拟仪器而言,显示控制部分改由计算机实现,仪器内部核心部分为各种类型总线结构的虚拟仪器卡。虚拟仪器作为一种新概念的测试仪器,就其功能而言,是真实的仪器,具有与传统测试仪器相同的功能;而虚拟仪器中 “虚拟”的含义是指用软件来实现传统仪器中许多硬件来实现的功能,其核心为虚拟仪器卡。为了使硬件工程师也能够完成测试软件的编写,NI等公司除了提供虚拟仪器的测试板卡外,还开发了专门用于虚拟仪器编程的图形化编程语言,如LABVIEW等,并以子VI形式向用户提供大量测量算法的软件包,用户可以方便地用这些完成常规的虚拟仪器
[测试测量]
详解<font color='red'>虚拟仪器</font>的校准
基于虚拟仪器的热膨胀仪测试系统设计
1 引言 热膨胀仪测试系统国内目前大多使用VC开发,其编程过程复杂,仪器之间的通讯实现十分繁琐,需要花费大量的时间。美国NI公司提出的虚拟仪器是一种综合的测试技术,它通过计算机上添加几种共性的基本仪器硬件模块,通过软件的思想来组合成各种功能的仪器和系统的仪器设计思想。虚拟仪器技术利用LabVIEW进行开发,LabVIEW系统开发能缩短复杂程序的开发时间,更迅捷、更经济地解决测试问题,而且它的界面友好,这使得它已经越来越多地在应用在测试领域。它内置了PCI、DAQ、GPIB、PXI、VXI、RS一232和RS一485各种通讯总线标准,具有强大的外部接口功能,能够简单的完成软件间的接口通讯,使用IabVIEW软件进行编程,能够节约
[测试测量]
基于<font color='red'>虚拟仪器</font>的热膨胀仪<font color='red'>测试</font>系统设计
基于LabVIEW与单片机串口的数据采集系统
1LabVIEW部分设计 1.1VISA简介         LabVIEW提供了功能强大的VISA库。VISA(Virtual Instrument Software Architecture)——虚拟仪器软件规范,是用于仪器编程的标准I/O函数库及其相关规范的总称。VISA库驻留于计算机系统中,完成计算机与仪器之间的连接,用以实现对仪器的程序控制,其实质是用于虚拟仪器系统的标准的API。VISA本身不具备编程能力,它是一个高层API,通过调用底层驱动程序来实现对仪器的编程,其层次如图1所示。VISA是采用VPP标准的I/O接口软件,其软件结构包含三部分,如图2所示。     与其他现存的I/O接口软件相
[嵌入式]
虚拟仪器的高精度波形发生器
    摘要: 一种用于虚拟仪器的高精度数字式的波形发生器。采用了折线近似逼近方法和三角分解实现方法,给出了硬件电路结构。     关键词: 虚拟仪器 波形发生器 函数发生器 折线近似 三角分解 乘法DAC 随着计算机软硬件技术的迅速发展,20世纪90年代以来出现的虚拟仪器技术正日益成为现代电子测试仪器的主流。基于PC总线的虚拟仪器的出现,使得使用者可以按自己的需要设计和构建各种测试分析仪器和系统。现代电子测试仪器进入了使用者也能设计、开发和构建的个人仪器时代。     虚拟仪器由PC计算机、通用硬件模块
[测试测量]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved