基于Labview的光伏发电数据监测系统的设计

发布者:SerendipityRose最新更新时间:2012-02-04 来源: eefocus关键字:Labview  光伏  监测系统 手机看文章 扫描二维码
随时随地手机看文章

1 引言

光伏发电系统的能量输出因周围环境的变化而表现出较大的差异,对光伏发电系统进行实时监测,可以获得原始测量数据,为系统的改进与优化以及以后的科学研究提供有用数据,对系统环境参数及其系统本身的电气性能进行监测和分析是保证系统正常高效运行的前提。光伏发电系统的运行一般是在无人职守的情况下进行,对地面上很分散的光伏系统进行监测维护是十分困难繁琐的,需要大量的时间和人力物力,因此在光伏发电系统中采用远程数据监测系统具有重要意义。Labview可以利用高性能的模块化硬件,结合高效灵活的软件来完成各种测试、测量和自动化应用。灵活高效的软件可以创建自定义的光伏监测系统的用户界面并能提供强大的后续数据处理能力,可以方便的设置数据处理、转换、存储的方式[4].模块化的硬件能方便的提供全方位的系统集成,另外Labview还有网页发布、报告生成、数据管理以及软件连接等功能。本文利用Labview的强大功能配合FieldPoint模块化分布式I/O设计了一种光伏发电数据监测系统,并通过网页发布的功能达到远程监测的目的。

2 光伏监测系统原理

图1为光伏数据监测系统的原理框图。用电流、电压、温度、风速等传感器感应光伏发电系统及周围环境的信息,生成可测量的电信号。由于传感器得到的信号可能会很微弱或者含有大量噪声,需通过信号调理装置进行放大、衰减、隔离、多路复用、滤波等操作。通过调理后的信号就可以与数据采集设备连接了。监测系统采用工业RS485总线实现下位机与监控主PC之间的通讯。RS485总线最大的通信距离约为1219m,最大传输速率为10Mb/S,传输速率与传输距离成反比,在100Kb/S的传输速率下可达到最大的通信距离,加中继器以后可以达到更大的传输距离。Labview软件及其配套的DAQ(Data Acquisition)驱动程序与数据采集硬件形成了一套完整的数据采集、分析和显示系统。同时Labview软件还能够完成数据存储任务,以便为以后的科学研究提供可靠数据。通过软件中的Web发布工具,可以通过互联网随时登入监测系统进行远程数据监测。

图1光伏数据监测系统原理框图

3 光伏监测系统硬件设计

3.1 传感器和变换器

光伏发电监测系统需要从现场获取的信息主要包括:①光伏方阵运行时的直流电流值、电压值、功率值,以及经过功率调节器以后的蓄电池充电参数。②采集风速值、光伏组件表面和周围环境的温度以及太阳的辐照度。③通过一定时期内采集的数据进行累计发电量、平均温度、平均辐照度等数值的计算。

采用与以上信息相对应的传感器和变换器对数据进行测量,温度传感器采用精密铂电阻温度传感器PT100,该传感器按照IEC751国际标准设计和制作,利用铂电阻在温度发生变化时其电阻值也发生变化的特性来测量温度,传感器元件由铂丝烧制,稳定性高,测量范围广,利用两个温度传感器可以分别对光伏组件表面温度和环境温度进行测量,将被测温度转换成(4~20)mA DC二线制标准信号而远程发送。电压的测量采用四通牌ST-A系列的STCV-800电压传感器,该系列传感器广泛用于电力系统的监测,电压测试范围分别为0~1200V.直流电流的测量选用武汉仪表公司生产的HD系列高精度直流大电流传感器。其工作原理如图2所示。

图2 电流传感器原理图

采用磁性比较方法,M为高导磁率材料铁芯,、为比例绕组,、分别提供给、直流电流。得到的直流磁势分别为, ,由于两个磁势和方向相反,当时,即铁芯内合成磁通为零时,磁势平衡方程为,且当时,.上述说明,即使是一个数值较大的单个电流,只要有足够的匝数,便可以用较小的与之平衡,并可用表示相应的数值,数值较小,便于直接进行精密测量,且为常量不受其他量的影响,因此用磁性比较方法测量直流大电流可以达到较高的精度。同样风速、太阳辐射量等信号的测量选用与光伏发电系统相配套传感器和变换器将信号其转换为标准电信号才能送入数据调理单元。

3.2 信号调理和数据采集装置

直接采集来的信号由于噪声等原因不一定能够满足采集系统的要求,为了适合数据采集设备的输入范围,由传感器生成的电信号必须经过处理。信号调理装置能够按照要求放大或者缩小电压电流范围,并对信号进行隔离滤波等处理。光伏监测系统的信号调理图如图3所示。

图3 光伏监测系统的信号调理

信号调理装置SCXI(Signal Conditioning Extension for Instrumentation)由信号调理机箱、信号调理模块和信号连接端口组成。分布式信号采集系统采用模块化的方式,完成信号调理、数据采集和网络通讯的功能。分布式信号采集系统非常适合于工业现场的测试,它可以使信号调理在靠近传感器的位置进行。监测系统采用NI公司的FieldPoint模块化分布式I/O产品,利用RS485串行接口可以方便的连接到本地PC.FieldPoint内装信号调理部件,可以直接连接到传感器,具有精确可靠的16位模拟输入,可供混用与搭配的独立I/O模块能够在恶劣环境下使用。另外,FieldPoint具有将I/O功能、信号终端和通讯方式模块化的创新结构。系统设计周期短而且性能稳定,FieldPoint系统包括大量隔离模拟与数字I/O 模块、接线座, 以及网络接口, 以便更容易地与标准开放式网络相连接[9].用户可以单独选择最合适的特定应用网络接口模块、I/O 模块或信号终端类型。光伏发电监测系统选用NI FP-AI-110 单端输入模块、NI FP-TC-120 热电偶模块和NI FP-1001 网络接口模块。

由于太阳能辐射传感器是利用其顶部的光电探测器来测量太阳辐射的,能够将光信号转换为电压信号,于是采集选用NI FP-AI-110模块,它是8通道单端输入模块,用于从各种传感器直接测量电压和电流信号。 温度的采集选用NI FP-TC-120,8通道热电偶模块,操作温度范围为-40到70°C ,用于标准J、K、T、N、R、S、E和B热电偶的温度的测量,具有信号调理、双层绝缘隔离、输入噪声过滤的功能和高精度delta-sigma 16位模-数转换器,保证测量数据的精确。以上两模块均提供HotPnP(热插拔)操作且配置简单,可自我诊断和自动调整到工程单位,是专为高效高可靠度的测量而设计的,提供滤波处理的低噪音16位分辨率模拟输入和过量程保护、板载诊断的功能都确保了无故障的安装和维护,且均附有NIST校准认证书以确保精确可靠的模拟测量,非常适合在光伏发电监测系统中进行应用。为了实现FieldPoint和RS485总线之间的通讯,还采用NI FP-1001网络接口模块,每个FP-1001网络模块可将多达9个FieldPoint I/O 模块作为结点连接到RS485网络。FP-1001通过FieldPoint端子基座连成的本地高速总线,管理PC和I/O模块间的通信。 FP-1001还提供若干诊断和自动化的功能,令安装、使用和维护得以简化。

4 光伏监测系统的软件设计

虚拟仪器技术(Virtual Instrumentation,VI)是随着计算机技术、大规模集成电路等技术的飞速发展,仪器系统与计算机软件技术紧密结合,而对传统仪器概念的突破。美国国家仪器(NI)公司开发的图形化软件开发环境Labview(Laboratory Virtual Instrument Engineering Workbench)是一种用图标代替文本行创建应用程序的图形化编程语言,是目前实现虚拟仪器软件设计最流行的工具之一,被公认为标准的数据采集和仪器控制软件,现已成为测试测量和控制行业的标准软件平台[10].

4.1 监测系统前面板设计

由于Labview使用G语言(图形化语言)进行程序设计,因此该系统界面包含了光伏发电监测系统所要进行监测的温度、电流、电压以及辐照度等的全部信息,Labview中的VI程序由前面板、程序框图、VI图标3部分构成,其中前面板是VI 程序的用户操作界面,是VI程序的交互式输入和输出端口。如图4所示,系统前面板即系统界面主要由主监测界面以及各种参数界面组成。主界面主要由发电参数监测模块、环境参数监测模块和数据处理模块3部分组成,各独立参数模块可以进行有关的参数设置,实时显示数据,数据处理模块可以存储相关的历史数据并进行数据回放,以便对特定模块单独进行分析处理。

图4 光伏监测系统前面板

图5是光伏发电数据监测系统前面板对应的部分程序框图,主要包括电压采集、电流采集、辐照度采集、温度采集及其处理程序。

图5 光伏监测系统部分程序框图

4.2 数据库的建立

实现数据库功能的第一步是建立数据源,由于Labview数据库工具只能操作而不能创建数据库,所以必须借助第三方数据库管理系统,选用Microsoft公司的Access软件来创建数据库。建立一个名为PVData.mdb的数据库文件,利用通用数据连接UDL(Universal Data Link)来获得数据库信息以实现数据库连接,建立与数据库文件对应的PVData.udl文件。数据库连接完成后便可以对数据库进行操作了,包括创建表格、删除表格、添加测试记录、查询记录等操作。如用Labview数据库工具包中的DB Tools Create Table.vi来创建光伏组件表面温度测试数据表,数据表中包括测试时间、测试数值、测试人等多项信息,用DB Tools Drop Table.vi来删除某个表格,用DB Tools Insert Data.vi添加一条记录。数据存储到数据库之后,用DB Tools Select Data.vi来将已存储的数据读出,进行记录的查询。从Tools Select Data.vi读出的数据是动态数据类型需要用Database Variant To Data.vi将其转换成正确的数据类型。

大多数情况下,并不需要把光伏发电监测系统数据库中的数据全部读出,由于Labview数据库工具包完全支持SQL语言(Structured Query Language),在Tools Select Data.vi的optional clause输入端按照SQL语法输入条件语句,即可读出需要的数据。如输入语句"Where TestTime='2008-9-12 10:24:20';",就能把此时间的数据记录读出来。

5 网络通信功能的实现

5.1 DataSocket通信技术

光伏发电监测系统本地计算机的数据通信可以采用DataSocket技术,它是NI公司推出的面向测控领域的网络通信技术,基于Microsoft的COM和ActiveX技术,对TCP/IP协议进行高度封装,用于共享和发布实时测量数据。DataSocket能够有效的支持本地计算机上不同应用程序对特定数据的同时应用,以及网络上不同计算机的多个应用程序之间的数据交互,实现跨机器、跨语言、跨进程的实时数据共享,在10M的网络中的传输速率可以达到640kbps,完全能够达到本监测系统的要求。利用DataSocket和网络技术,可以更有效的进行数据采集、分析、处理和显示。如对于光伏发电系统温度信号的监测,在不同主机上分别创建一个DataSocket服务器VI和一个DataSocket客户端VI,使用DataSocket函数节点传递数据。首先运行DataSocket Server应用程序,它是一个独立运行程序,通过内部数据自描述格式对TCP/IP进行优化和管理,然后利用服务器VI中的DataSocket Write节点将温度数据发送到dstp格式指定的连接中,最后在创建的客户端VI中使用设置好的DataSocket Read节点将数据从指定的地址读取数据,并显示在波形图上。

5.2 远程访问

在Labview中,可以通过远程访问来实现网络通信。在光伏发电监测系统中,首先对服务器进行相应的配置,主要包括用来设定服务器目录和日志属性的"Web服务器配置",设定对客户端开放的VI程序"Web服务器中可见VI "和用来设置客户端访问权限的"Web服务器浏览器访问".在配置完成后,在完成在服务器端发布网页的操作,在客户端便可以通过网页浏览器访问服务器发布的页面,实现了监测系统的远程访问。

6 结束语

本文将虚拟仪器技术应用于光伏发电系统的数据监测,借助于Labview强大的软件支持构建了一个完整的光伏监测和分析系统。该系统可以方便的对光伏发电系统的发电特性及周围环境进行实时监测,得到可靠的监测数据。选用了适合本系统的各类传感器及变换器,并阐述了建立本监测系统数据库的方法,创新性的应用DataSocket通信技术和Labview远程访问技术实现了系统远程监测的功能。由于FieldPoin模块化及Labview软件自身的特点,在需要研究其他运行特性的时候可以很方便的进行扩充,本系统运行稳定,界面友好,操作简单方便,而且具有成本低,使用方便的特点,是一套通用的监测系统,具有很好的应用前景。

关键字:Labview  光伏  监测系统 引用地址:基于Labview的光伏发电数据监测系统的设计

上一篇:虚拟仪器的数字阵列天线测试
下一篇:基于SOPC技术的虚拟示波器设计

推荐阅读最新更新时间:2024-03-30 22:23

基于LabVIEW的四通道多参数测试系统软件设计
随着工业控制技术与计算机技术的发展,基于计算机硬件和软件的数据采集与控制系统已成为工业控制的主流。基于LabVIEW开发的测控系统,在工程和科研的各个领域得到了广泛应用。LabVIEW是美国国家仪器公司推出的一个图形化编程的软件开发环境。是一个标准的数据采集和仪器控制软件。由于LabVIEW功能强大且灵活,利用它可以方便快捷地建立自己的虚拟仪器,成为测试、测量和控制设计的专用工具,其范围可从温度监控到复杂的仿真和控制系统。本文主要介绍了基于LabVIEW测试系统软件,该软件具有数据采集、处理、分析和电路编程能力,能够提供丰富的数据信息,生成信号曲线,具有较高的实时性、准确性和可扩展性。通过软件可以帮助实验人员实时观察要测量的压力、
[测试测量]
基于<font color='red'>LabVIEW</font>的四通道多参数测试系统软件设计
GHz高频信号的LabVIEW和MATLAB混合处理新方法
随着技术力量的不断提升,被处理的信号的频率越来越高。例如,手机的信号便是上GHz的超高频信号。在采集这类超高频信号的过程中,系统很容易受到各种电磁波的干扰,从而使有用信号夹带各式各样的谐波成分,这就给后续的信号处理带来了很大的麻烦,诸如数据量过大,计算复杂等。因此设计一套效率高,可用性强的系统来对高频信号进行采集及处理显得尤其重要。 1 设计思路 在这篇文章中,作者讨论一种可行的方法,即是使用LabVIEW来进行数据采集,使用MATLAB作为数据处理的平台。那么如何高效的将两者结合将成为设计的关键。本文将对不同的结合方法进行实验,具体执行步骤如下:首先使用LabVIEW将高频信号采集回来并暂时保存;鉴于MATLAB强大的计算能力,
[测试测量]
GHz高频信号的<font color='red'>LabVIEW</font>和MATLAB混合处理新方法
基于TC35i的远程温度监测系统设计
1 引言 随着科技的发展和自动化水平的提高,温度的自动监测已经成为各行各业进行安全生产和减少损失采取的重要措施之一 。特定场合下由于监测分站比较分散、偏远,采用传统的温度测量方式周期长、成本高,而且测量员必须到现场进行测量,因此工作效率非常低。且不便于管理。本文提出了基于GSM的远程温度监测系统,采用美国Dallas公司生产的DSl8820数字温度传感器,通过现有的GSM网络将监测结果以短信方式发送至相应的监控终端(如手机、PC机)。系统具有结构简单、可靠性高、成本低等特点,可广泛应用于桥梁混凝土测温、油气井场、电力电缆火灾监测、粮仓及物资仓库温度监测。 2远程温度监测系统硬件设计 2.1系统构成 系统分为监测中心站和远程
[传感技术]
论微型逆变器在建筑光伏一体化场景中的应用优势
光伏建筑一体化(BIPV),是应用太阳能发电的一种新概念,简单地讲就是将太阳能光伏发电方阵安装在建筑的围护结构外表面来提供电力。根据光伏方阵与建筑结合的方式不同,光伏建筑一体化可分为两大类:一类是光伏方阵与建筑的结合;另一类是光伏方阵与建筑的集成。 BIPV系统中光伏组件与建筑相结合,光伏组件不额外占用地面空间,特别适合于土地资源紧张的城市建筑。全球建筑物自身耗能约占世界总能耗的三分之一以上,采用BIPV技术,可以将建筑物从耗能型转变为功能型,创造低能耗、高舒适度的健康居住环境,实现城市建筑的可持续发展。     相比于传统逆变器来说,微型逆变器因其体积小巧、更加科学的系统设计,在BIPV的应用中有着不可替代的优势。微逆在屋
[新能源]
纳米线技术使光伏电池吸收光波长范围增大
光伏发电科研人员都想尽可能地利用更宽波长范围的太阳光以获取最大转换效率。但是,他们仅仅利用了一小部分的太阳能,浪费了时间和金钱。因此,他们将氮化铟镓看作是未来组成光伏系统的宝贵材料。 科研人员通过改变铟的浓度来调整其响应,使其可以在更宽的波长范围内吸收太阳能。 通过对系统作更多的设计变化,其可以吸收更多的太阳光谱,从而提高太阳能电池的效率。但是现在光伏行业所常用的硅材料,在该波长范围内是受限的,不能吸收该波长范围的太阳光。 有一个问题:氮化铟镓是三族氮材料系的一部分,主要生长在氮化镓薄膜上。由于氮化镓原子层和氮化铟镓原子层有不同的晶格间距,位错导致了结构应变,限制了层的厚度和所能添加的铟的百分比含量。 因此,增加铟的百分比
[电源管理]
保隆科技推出全球最小的胎压监测系统模块
新系统模块采用飞思卡尔全球最小的胎压监测系统,向新兴市场提供高性能。 2014年10月20日,中国上海讯–上海保隆汽车科技股份有限公司(保隆科技)日前宣布推出全球最小的、高度集成的胎压监测系统(TPMS)模块,其重量极轻,仅8克。保隆TPMS模块可确保轮胎气压处于正常范围,防止出现危险的爆胎和瘪胎情况,从而帮助汽车OEM和后装市场供应商提高汽车的安全性。保隆TPMS模块采用了飞思卡尔®半导体的FXTH87胎压监测系统,提供超长的电池使用寿命,并保证解决方案的长期有效。飞思卡尔的FXTH87胎压监测系统也于当天公布,比竞争对手的解决方案小50%,净重仅0.3克。 胎压不合适对于驾驶员来说既危险又不经济。据美
[汽车电子]
保隆科技推出全球最小的胎压<font color='red'>监测系统</font>模块
预计2016年光伏逆变器价格压力将继续
领先的光伏逆变器制造商SMA Solar Technology(ETR:S92)日前预计,由于公共事业规模光伏市场领域推动的全球主要市场仍然对价格敏感,2016年收入将与前一年持平。 在最近报告2015年初步收入约为十亿欧元,超越修订后的较高出货量目标后,在其年度分析师日活动中,SMA Solar预计2016年收入为9.5亿欧元至10.5亿欧元,由于Advanced Energy退出中央逆变器领域,在美国赢得业务尤为明显。SMA Solar指出,去年其获得Advanced Energy 70%的合同,120MW来自主要的美国EPC公司Swinterton。 由于全球光伏市场在德国以外拓展,该光伏逆变器制造商连续五年多以来持续损失市
[新能源]
基于F0单片机的无线心率心电监测系统
STM32F0系列的单片机不仅带来了低廉的价格而且带来了更新的功耗但是性能却没有打多大的折扣,低于得成本和低功耗的设计是十分合适的。我的项目本身是在F1系列上开发,但是考虑到其以后的成本,想在开发后再移植到F0单片机上,所以以下的一些介绍可能跟F1单片机联系比较多,而F0系列的单片机我是通过了学习掌握了其基本用法,利用MX和MBED进行了一些基本的例程的使用,还没用将我所有的程序移植到我们的F0单片上,毕竟一个新的产品还是先在自己熟悉的片子上跑比较合适,这样画PCB板子的时候会成功率高一些。 我的预想方案是基于F0单片机的无线心率心电监测系统,病人或者老人通过将电极放在身体的测量位置就可以读取心电图和心率通过无线的方式将其传送
[单片机]
基于F0单片机的无线心率心电<font color='red'>监测系统</font>
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved