借助集中式数据采集,开发在线风电场状态监测系统

发布者:机械梦想家最新更新时间:2012-08-31 来源: EEWORLD关键字:LabVIEW 手机看文章 扫描二维码
随时随地手机看文章

构成该应用的模块示意图
"LabVIEW图形化编程环境,不需任何额外费用即可将模块整合至研发阶段"
- Roberto Arnanz, Fundacion CARTIF
挑战:
开发诊断网络,自动追踪锋利涡轮机的状态,并具备集中存取功能,让用户对获取的信息进行离线分析。
解决方案:
使用NI LabVIEW开发应用,进行数据采集、数据管理、为应用提供网络存取功能,并使用NI CompactDAQ进行数据采集,以便在单一设备上调节并获取不同的信号。
作者:
Roberto Arnanz - Fundacion CARTIF
Anibal Reñones - Fundacion CARTIF
- - - Iberdrola Renovables

CARTIF的工业诊断与预测维护工程师,工作內容是开发诊断式工业环境系统。 而这些系统必须能取得如振动、电子与高低频率的各种数位信号,并达到高存数容量。许多情况下,我们必须在整个电力生产过程不断操作这些系统。

对风力涡轮而言,其功能与设计阶段的数据采集、诊断与存储需求,均近似于任何旋转机器的应用。 在风力涡轮的应用上,我们必须诊断多台机器,也因此大幅提高了资料与诊断的数量,使中央处理压力增大。

在与Iberdrola Renovables公司合作中,我们开发的解決方案,可向所有机器提供独立的诊断装置、分散式 PostgreSQL数据库,同时每个风力电厂搭配1组服务器,和1组中央服务器。 我们对界面进行修改使其可用于网络浏览器,从而分散资料的存取。 有了LabVIEW网络服务器工具组,我们开发的应用可供单机使用,并可发布到网络上。 因此,我们使用LabVIEW作为单一的开发工具,在不考虑个别功能的安装位置、沟通方式,与用户使用方式的情况下,整合数据采集、信号处理以及界面设计。

数据采集
根据诊断需求,我们必须从每座风力涡轮机中采集多个信号。 我们安装了第一款原型,它具备8组ICP加速度计、5组电容加速度计、3组电流钳、3组电压传感器和2个测量速度的电感传感器。 在考虑了各种信号类型之后,我们选择使用NI CompactDAQ系统,其中包含NI cDAQ-9172 8槽机箱、NI USB-9233加速度计、NI 9205 C系列模拟输入模块、NI 9423漏极输入C系列模块,与NI 9474 C系列电子输出模块。


由于该系统在研究过程中能以可变速度操作,所以该系统符合我们对信号采集的多种需求,包括将速度信号与其余用作分析的信号同步。 因为与缓慢转动轴相关因素的一般频率非常低,而且该系统某时间段内的旋转速度数据变动性并不高且便于分析,所以该系统还能够在较长时间内连续地进行数据采集。

为了设定指定的采集时段,我们只有在所需的采集时段内、速度变动百分比在不超过某个阀值时才能进行数据存储。 这种方法相当于使用触发软件,该软件中已存储的资料会对应预触发时间,并且触发条件时由某个计算所决定,此计算会决定以往数据中的最高速度变化。
除了编码器信号,针对8个模拟通道,该系统可实现连续25 kHz的传输率,从而将资料连续存储至磁盘,并能够在所需时间内获得该频率的信号。

诊断应用
考虑到动力相对的不足,该系统会逐次采集资料并稍后处理所收集到的资料。 在每一轮的基础上我们进行不同通道和频率的采集,这是根据定期诊断进行的;我们将全部的结果存储在本地资料库中,并且只将最显著的结果或警报发送至中央数据库。

多个模块组成应用程序, 监督模块读取数据库设定,并根据这些设定、命令在预定时间执行各种采集、后续处理与可用数据的诊断。 用户界面模块提供已采集信号的存取,以及用诊断结果进行简单的分析功能,例如1个或多个采集的快速傅里叶(FFT)显示,而且该模块可互相比较。 无需下载已采集的信号,任何用户都可以通过网络浏览器连接至该界面。

模块化设计便于处理演算法的执行修改,且不必重新便宜编译应用程序就能增加新的功能。 在此案例中,该演算法位于动态连接库,可在系统处理没有运行时对其进行编辑。

诊断网络
该系统的管理机制可方便每个数据库保持最新状态,即使其中一个点失去了联系,所有的机器仍会连续自动进行预订的诊断。

我们设计了一个位于中央服务器上、可从任何网络浏览器存取、监控或进行数据采集(SCADA)的用户界面,所以该应用程序的用户能够快速获得各种机器所产生的诊断信息,并且具有高度的灵活性。 为了快速地存取或分析采集的信号,用户可以连接到机器上(而非中央服务器上)的界面。 在Apache服务器上,我们将该方法建立在LabVIEW应用程序上。

为了在测试期间让各种网络元素相互通信,我们建立了一个无线诊断网络,使其独立于风力场中所有其他通信之外。

使用LabVIEW简化模块集成
我们使用LabVIEW作为整个诊断应用程序的开发软件。 LabVIEW图形化编程环境,不需任何额外费用即可将模块整合至研发阶段。 尽管我们独立设计了数据采集、处理与诊断模块,此模块设计能够推进软件开发过程,并且可以根据计算要求与设备功能,在不同平台(或多核心系统及不同的微处理器)上执行该模块。 我们在Iberdrola Renovables公司的电厂中实现了该系统,他们的大力支持对我们项目的开展起了巨大的作用。

关键字:LabVIEW 引用地址:借助集中式数据采集,开发在线风电场状态监测系统

上一篇:三星电子采用安立公司快速测试设计(RTD)和MD8430A进行LTE多媒体广播展示
下一篇:领邦研发轮对自动检测机 可测量各种火车轮对

推荐阅读最新更新时间:2024-03-30 22:29

LabVIEW初学者的二十条忠告
1. LabVIEW是门程序设计语言,不是画图工具! 2. 不要以为LabVIEW很简单,设计个庞大工程难度不亚于C++! 3. 语言本身永远只是招式,请注意修炼内功:数据结构、算法、软件工程、数字电路等! 4. 多读书、读好书:《LabVIEW For Everyone》、《LabVIEW-Advanced Programming Techniques》! 5. 学习程序设计只有一种方法:读代码、写代码、读代码、写代码 ! 6. 不要以为读完一遍《LabVIEW For Everyone》你能有多大收获,请再继续读两遍! 7. 研读书上的每一个例子,他们往往是程序中的经典! 8. 对齐你的每一个控件和函
[测试测量]
使用LabVIEW设计和开发用于分离稀有细胞的自动化系统
挑战: 设计、开发并制造一种能够检测和分离循环肿瘤细胞(CTCs)或母血中的胎儿细胞的工具,前者的目的是研究肿瘤学中的个体化治疗,后者是为了实现无创性产前诊断。 解决方案: 开发一种名为“芯片实验室”的专利技术,该技术利用活性硅衬底的微电子特性,可制造微型生物实验室,借助NI嵌入式控制器对悬浮细胞分别单独操作。 Silicon Biosystems公司的技术基于电场能够对悬浮在液体中的中性可极化粒子(比如细胞)施加作用力的能力。按照这种称为介电泳(DEP)的动电学原理,非均匀电场中的中性粒子会受到一个空间上电场强度沿(正)介电泳(pDEP)增加方向或者(负)介电泳(nDEP)减少方向的力。更具体地说,粒子由于其自身的电特性受
[测试测量]
基于LabVIEW为平台设计多参数病人监护仪自动测试系统
  以NI LabVIEW为软件核心,集成了多种数据采集卡,通信板卡,各类通用仪器,医疗专用仪器,安规仪器,切换夹具等硬件,共同构成多参数病人监护仪的全功能及安全测试平台。   使用的产品:    测试硬件:   1) 标准工控机   2) NI PCI GPIB通信板卡(778032-01)   3) NI PCI-6528 24路通道间光隔离漏/源输入   4) NI PCI RS232/4串口通信板卡(777642-04)   5) NI PCI-6733 高速模拟输出(AO)   6) NI USB-6251 USB高速M系列多功能DAQ   7) USB-I2C总线适配器   8) Chroma AC S
[测试测量]
基于<font color='red'>LabVIEW</font>为平台设计多参数病人监护仪自动测试系统
基于LabVIEW6.1的数字存储示波器设计
0 引言   1986年,美国国家仪器公司提出了虚拟仪器概念。它是一种程序设计思想,是前面板、数据流框图和图标或连接器的有机结合,密不可分。随着现代测试与仪器技术的发展,目前虚拟仪器概念已经发展成为一种创新的仪器设计思想。它是以通用计算机(含LabVIEW软件)为操作平台,以模块化功能硬件为桥梁的测控系统。在虚拟仪器系统中,硬件仅仅是解决信号的输入和输出问题的方法和软件赖以生存运行的物理环境,软件才是整个仪器的核心,用于实现硬件的管理和仪器功能的实现 。用户只需通过调整或修改仪器的软件,便可方便地改变或增减仪器系统的功能与规模,甚至仪器的性质,完全打破了传统仪器有厂家定义,用户无法改变的模式,给用户一个充分发挥自己才能和想象力的空
[测试测量]
基于<font color='red'>LabVIEW</font>6.1的数字存储示波器设计
LabVIEW系列——错误簇的传递
从以下示例可以得出结论: 1、图一出现的三种错误,分别位于打开/创建/替换文件函数,写入文本文件函数,读取文件文件函数。说明三个函数都被运行了。 2、图二只出现了一种错误,位于打开/创建/替换文件函数,其他两个函数并没有执行,说明错误链不仅仅具有传递功能,还可以在错误发生后可以避开其他意外的错误继续产生。
[测试测量]
LabVIEW数据记录和存储(三)—二进制文件(Binary File)
在文件存储的逻辑上,二进制文件基于值编码,而不是字符编码,其占用空间小,读取/写入速度快,但是译码比较复杂,不利用数据共享。根据具体编码方式的不同,二进制的使用方式也有所不同,如对bmp格式,规定了文件各个字节段/块的含义,只需要按照相应的编码方式进行解码就可以得到bmp文件的内容。因此,使用记事本是无法查看bmp的内容的(无法解码bmp文件),只能使用专门的图像查看软件。事实上,任何程序员都可以按照自己的方式自定义二进制文件的编码方式,并提供相应的解码模块将信息从二进制文件中提取出来即可。 与文本文件的读写方式类似,LabVIEW中的二进制文件的读写采用图 10所示的两个函数完成: Write To Binary File 和 R
[测试测量]
<font color='red'>LabVIEW</font>数据记录和存储(三)—二进制文件(Binary File)
LabVIEW 8.2的仪器总线技术的介绍
  最早的仪器总线技术是通过接口总线(GPIB)技术,后来出现了VXI和PXI总线技术,提高了仪器和计算机之间的数据传输速率。基于局域网的LXI技术可以进一步提高速率。由多种总线技术构成的混合总线技术,可以充分结合各种总线技术优点,是未来总线技术应用的趋势。   仪器驱动程序是连接仪器硬件和软件的桥梁,仪器驱动程序规范和标准也随着总线技术不断更新和发展。目前占主导地位的仪器驱动程序的两个规范是VPP规范和IVI系列规范。VPP规范实现了仪器的通用性,IVI系列规范加强了仪器的互换性。   LabVIEW中仪器控制包括仪器驱动、IVI驱动、GPIB、串行通信、VISA和仪器I/O助手。针对这6个方面,LabVIEW分别提供了许多
[嵌入式]
基于LabVIEW快速搭建医疗设备原型
  21世纪是生命和健康的世纪,生命科学的飞速进步不断推动着人类对自身健康和疾病的认识,如何开发创新型的医疗电子设备也成为研究的热点之一。   医疗设备研究内容涉及众多工程学研究领域,如电子学、计算机、信息处理、光学、精密机械学等。随着医学的发展、治疗手段的多样化和相关工程领域技术的不断进步,医疗电子设备正变得日益复杂化。一般大型医疗设备由多个子系统组成,需要集成多种传感器、机械部件、电子元件,如FPGA或微处理器等,还会涉及到多种专业总线和协议,其研发周期也相当长,可能需要2年~3年甚至更长的时间。于是,如何缩短整个医疗电子设备系统的开发时间、提高创新程度便成为占领市场的要素。   对于一些小型公司来说,如何从激烈的市场竞争中站
[医疗电子]
基于<font color='red'>LabVIEW</font>快速搭建医疗设备原型
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved