使用LabVIEW设计和开发用于分离稀有细胞的自动化系统

发布者:正在搬砖的河马71最新更新时间:2013-01-24 来源: 21IC 关键字:LabVIEW  DEPArray系统  自动化系统 手机看文章 扫描二维码
随时随地手机看文章
挑战:

设计、开发并制造一种能够检测和分离循环肿瘤细胞(CTCs)或母血中的胎儿细胞的工具,前者的目的是研究肿瘤学中的个体化治疗,后者是为了实现无创性产前诊断。

解决方案:

开发一种名为“芯片实验室”的专利技术,该技术利用活性硅衬底的微电子特性,可制造微型生物实验室,借助NI嵌入式控制器对悬浮细胞分别单独操作。

Silicon Biosystems公司的技术基于电场能够对悬浮在液体中的中性可极化粒子(比如细胞)施加作用力的能力。按照这种称为介电泳(DEP)的动电学原理,非均匀电场中的中性粒子会受到一个空间上电场强度沿(正)介电泳(pDEP)增加方向或者(负)介电泳(nDEP)减少方向的力。更具体地说,粒子由于其自身的电特性受到正介电泳力或负介电泳力,这种电特性取决于频率,以及粒子所悬浮于的介质的属性(图1)。

newmaker.com
图1. 通过介电笼捕获细胞

在DEPArray系统中,电场产生于硅芯片(图2a)的表面,该表面直接与细胞悬浮于其中的微流体腔相连。微流体腔被芯片表面以及距离芯片表面几十微米的透明覆盖面所封闭。活性芯片的表面实现了微单元的二维阵列,每一个微单元由平面电极和集成逻辑电路组成(图2b)。当被放到与电极相对应的区域中时,每一个电极可以通过编程产生一个势阱或介电笼。在每一个介电笼中,粒子可以处于稳定的悬浮状态,从而实现单独分析。因为每一个细胞都是被单独分析,系统能够实现基于荧光的复杂分析,从而可以识别令靶细胞区别于其它成千上万受污染细胞的独有特性。靶细胞能够独立,但也是同时地被移动到芯片的某个区域,微流体控制在那里将它们自动回收。

newmaker.com
图2. DEPArray芯片的布局[page]

DEPArray系统

我们的专利平台DEPArray,是一个灵活且易于使用的先进技术系统(图4)。系统的核心是一个微芯片,它在一个微流体电路中集成了包含30万个电极的阵列。

DEPArray系统使用NI公司的硬件和软件来管理高精密机械、微流体、现成可商用的电子和自定义工具,以及视觉和图像处理。系统允许用户进行的工作流程概括为以下的基本步骤:

通过微流体控制装载样本
在明视场和荧光下获取图像
分析图像
通过图形用户界面识别并选择靶细胞
自动对识别的靶细胞进行分类
通过微流体控制对靶细胞进行回收

样品装载

样品装载是一个非常精细的过程。我们使用NI LabVIEW软件控制泵装置产生所需的压力梯度,从而使样品从入口槽流到微流体腔内的芯片上。系统使用由NI视觉开发模块的视觉库开发的算法,实现装载过程的自动监视与控制。

捕获与分析

一旦样品被装载到芯片上,LabVIEW就会控制所有的I/O线,对电极阵列进行配置,将细胞关在笼中,并使它们在流程的所有阶段都保持悬浮,从而保证强而可靠的系统控制。

样品分析是通过荧光以及明视场下的多重滤光器对芯片表面进行光学扫描而实现的。LabVIEW控制置有芯片的处理系统并以微米级的精度进行捕获、图像处理,并对获取自显微镜的高精度数字图像进行视觉化处理。

选择靶细胞

在这个步骤中,DEPArray系统为用户提供了强大的人机界面(HMI),它由LabVIEW结合Microsoft .NET framework开发,对靶细胞进行分类和选择(图3)。可以使用不同的方法对细胞进行分析,从而验证它们的性质。人机界面展示了分析测量结果的散点图或直方图,并提供了图像上所有测量结果的列表显示。对于被选中的每一个细胞,分析中捕获的图像也被显示出来,从而允许用户将计算机测量的结果与形态学评估结合起来。

自动分类

在这个步骤中,根据细胞地图和障碍物,LabVIEW动态地配置芯片电极阵列,使其能够单独而同时地把每一个感兴趣的细胞从初始位置移动到回收点。数字化控制每一个感兴趣细胞的移动,使系统获得高分类纯度,以及无与伦比的性能。

回收

在这个步骤中,LabVIEW与蠕动泵装置进行交互,产生所需的压力梯度,使回收介质(比如微流体腔中的阱或者玻片)中包含所选细胞的缓冲物部分向下流动。分类和回收过程可以重复进行,以分别收集多个细胞或多组净化的细胞,从而使用传统的分子生物学技术进行基因分析。

结论

Silicon Biosystems公司开发的技术,充分利用了NI的软硬件与 Sky Technology公司的技术,为一系列研究活动提供了方法,这些研究旨在分离循环肿瘤细胞(CTCs)以研究肿瘤学中的个体化治疗,以及识别母血中的胎儿细胞,从而实现无创性产前诊断。
关键字:LabVIEW  DEPArray系统  自动化系统 引用地址:使用LabVIEW设计和开发用于分离稀有细胞的自动化系统

上一篇:航天测控虚拟仪器测试环境软件总线体系结构
下一篇:基于LabVIEW的天线伺服集中监控系统设计

推荐阅读最新更新时间:2024-03-30 22:33

LabVIEW的工具选板
工具选板提供了VI程序设计时可以选用的基本工具,如图2所示,在前面板和程序框图窗口均可打开使用。单击选板右上角 可关闭工具选板。在前面板或程序框图窗口的空白区域按下 Shift+鼠标右键 ,也可弹出临时工具选板。   图:工具选板   表:工具选板中的工具及其功能
[测试测量]
<font color='red'>LabVIEW</font>的工具选板
利用CompactRIO和LabVIEW控制心脏模拟器
  利用NI CompactRIO创建一个独立的硬件在环(HIL)测试环境。该测试环境可以把人工机械心脏与循环血流模型相结合,创造一个包含真实血液动力环境的生动的解决方案。     "CompactRIO提供了一个坚固、可靠、独立的平台,使我们的团队能够进行持续性测试,这在普通的计算机上是不可能实现的。"     由心脏病导致的死亡占发达国家所有死亡人口的将近一半。心脏移植仍然是治疗心脏病最有效的方式,但捐献的器官远远及不上需求。为了解决这种不平衡情况,目前人们正在研究使用。利兹大学正在开发的一种新颖的机械人工心脏辅助装置被命名为智能心室辅助装置(iVAD)。该装置能够作为人造肌肉包覆心脏,通过在心脏心室外表面周围施加与自然节
[工业控制]
LabVIEW数据记录和存储
对自动测试系统而言,数据存储是必不可少的功能之一。根据不同的应用和需求,程序员可以为终端用户设计不同的数据存储方式,如数据库、文本文件、二进制文件等。这些数据存储方式都有自己的优缺点,因此无法笼统地说哪种好或不好。从通用性的角度考虑,有如下的指标供参考。 存取速度。数据写入文件或从文件中读出有需要耗费一定的时间,不同的存储格式也意味着数据存取速度的差别。 可检索和维护。数据文件写入后并不是一成不变的,有效的数据组织形式能够快速地修改文件中的某部分数据,而不是将文件全部读出。如ini文件使用section和key进行有效地检索,因此可以根据section和key直接指定删除或修改文件中的部分数据。 兼容性。很多应用程序并不是独
[测试测量]
基于LabVIEW软件和PXI仪器的能源存储恒电位仪
  挑战:开发一个具有易用软件具有用户友好界面、高精度和高分辨率、多频模式、低电流选项,和电子邮件/文本通知功能的恒电位仪电位/恒流器电流/阻抗分析仪系统(电位系统)   解决方案:基于LabVIEW软件和PXI仪器,使用恒电位仪来确定电池,电容和燃料电池等设备的能源存储,额定功率和内阻。    使用先进的NI模块化仪器技术,SolRayo ETS可以达到或超过现有商用设备的速度和精度。同时,一个美观的,友好的用户界面大大提高了设备的可用性。   可再生能源是当今世界上增长最快的市场之一。能源存储技术在风能、太阳能和生物能等“绿色”能量产生源中起着重要的作用。应用于能源存储的公共和个人资金正在暴涨,使大量前所未有的研究
[测试测量]
一种基于LabVIEW8.2提取ECG特征点的新方法
1、引言 目前的心电图(ECG)还主要依赖于人工读图,而且对相关人员所具备的专业知识水平要求很高。在计算机自动分析识别方面,虽有研究但技术尚不成熟 ,对心电波形的自动识别还不准确,使得计算机自动诊断心电图还未能有效应用于临床 , 。在ECG信号的自动识别领域,有关P-QRS-T各波(群)的识别已经有很多研究成果,如可变阈值法 、自适应阈值的方法 、差分阈值法 、模板匹配法 、小波变换法 、神经网络法 等。这些方法各有所长,但还没有一种堪称完美。在数据分析过程中,这些方法都要对时域内包括噪声在内的所有信号样本点进行检测、判别。 2、LabVIEW8.2中Waveform Peak Detection VI简介 在Lab
[测试测量]
一种基于<font color='red'>LabVIEW</font>8.2提取ECG特征点的新方法
使用LabVIEW和NI硬件精确安全地测量胎儿心率
挑战: 设计一个低功率光学胎心率监听仪,以避免使用超声波对胎儿造成的伤害。 解决方案: 使用NI LabVIEW软件和NI硬件设计,利用高级数字信号处理技术设计一个胎心率监护仪。 “采用LabVIEW,我们成功实现了数字同步检测和自适应滤波技术” 胎心率(FHR)检测是一种用于胎儿出生前判断胎儿健康状况,并帮助识别胎儿缺氧或受压迫等潜在危险的主要方法。早期检测的目的是为了降低胎儿发病率和死亡率。 目前,胎心率探测最常用的方式是多普勒超声波,标准的产前胎儿健康测试为胎儿无负荷试验(NST)。这些测试通常在有连续波仪器的医院内完成。 尽管目前的超声波胎心率检测仪有了很大的改进,价格不断降低,体积也更加小巧,我们仍
[测试测量]
使用<font color='red'>LabVIEW</font>和NI硬件精确安全地测量胎儿心率
工业以太网在变电站综合自动化系统的应用
自动化系统引言变电站是输配电系统中的重要环节,是电网的主要监控点。近年来,随着我国经济高速发展电压等级和电网复杂程度大大的提高。为了提高供电质量,保证电力系统安全、可靠、经济运行变电站综合自动化系统在全国雨后春笋般发展起来。 1 引言    变电站自动化系统是由多台微机组成的分层分布式控制系统,包括微机监控、微机保护、电能质量自动控制等多个子系统。在各个子系统中往往又由多个智能模块组成。例如:在微机保护子系统中,有变压器保护、电容器保护、各种线路保护等。因此在变电站自动化系统内部,必须通过内部数据通信,实现各子系统内部和各子系统之间的信息交换和信息共享,以减少变电站二次设备的重复配置并简化各子系统的互连,这样既减少了重复投资,又提高
[嵌入式]
LabVIEW开发SDH/PDH远程测试系统
  采用虚拟仪器和现代分布式网络测控技术构建远程测试系统,可解决对通信网异地实时监控的问题,本文介绍一种利用 LabVIEW网络功能实现在Internet中使用的基于客户机/服务器模式的 SDH/ PDH远程测试系统。      随着近年来光同步传输网的迅速发展以及用户要求的不断提高,对通信网进行异地实时监控的需求越来越多。另外测试技术的不断革新也促使新的网络测控技术应用到通信网的监测监控中,以提高通信网的可靠性,保证通信网的安全稳定运行。      这里实现的SDH/PDH远程测控系统是基于客户机/服务器(Clients/Server)模式,服务器通过PCI- GPIB接口卡与HP37717B的HP-IB接口相连,然后HP377
[测试测量]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved