在EMC测试设备选型时,常遇到这样的问题:EMI接收机与频谱仪到底有何不同,为何EMI测试要选用接收机?本文依据CISPR16-1(GB/T6113)和GJB152,对于接收机的测试原理进行剖析,分析接收机与频谱测试设备的选择提供参考-符合标准的接收机是EMC合格评定测试的唯一选择。文章介绍了接收机与频谱分析仪的差异。
接收机和频谱分析仪的原理差异
频谱分析仪是当前频谱分析的主要工具,尤其是扫频外差式频谱分析仪是当今频谱仪的主流,应用扫频测量技术,通过扫频信号源得到外差信号进行频域动态分析。
接收机是进行EMC测试的主要工具,以点频法为基础,应用本振调谐的原理测试相应频点的电平值。接收机的扫描模式应当是以步进点频调谐的方式得到的。
a.基本原理
根据工作原理,频谱分析仪和接收机可分为模拟式和数字式两大类。外差式分析是当前使用最为广泛的接收和分析方法。下面就外差式频谱分析仪与接收机之间的主要差别作一分析。
b.输入RF信号的前端处理
接收机与频谱仪在输入端对信号进行的处理是不同的。
频谱仪的信号输入端通常有一组较为简单的低通滤波器,而接收机要采用对宽带信号有较强的抗扰能力的预选器。通常包括一组固定带通滤波器和一组跟踪滤波器,完成对信号的预选。
由于RF信号的谐波、交调和其它杂散信号的影响,造成频谱仪和接收机测试误差。相对于频谱仪而言,接收机需要更高的精度,这要求在接收机的前端比普通频谱仪多出一个预选器,提高选择性。
接收机的选择性在GB/T6113(CISPR16)中有明确规定。
c.本振信号的调节
现在的EMC测量,人们不止要求能手动调谐搜索频率点,也需要快速直观观察EUT的频率电平特性。这就是要求本振信号既能测试规定的频率点,也能够在一定频率范围扫描。
频谱仪是通过扫频信号源实现扫频测量的。通常通过斜波或锯齿波信号控制扫频信号源,在预设的频率跨度内扫描,获得期望的混频输出信号。
接收机的频率扫描是步进的,离散的,是离散的点频测试。接收机按照操作者预先设定的频率
关键字:EMC接收机 频谱分析仪 频率扫描
引用地址:EMC接收机与频谱分析仪的区别分析
接收机和频谱分析仪的原理差异
频谱分析仪是当前频谱分析的主要工具,尤其是扫频外差式频谱分析仪是当今频谱仪的主流,应用扫频测量技术,通过扫频信号源得到外差信号进行频域动态分析。
接收机是进行EMC测试的主要工具,以点频法为基础,应用本振调谐的原理测试相应频点的电平值。接收机的扫描模式应当是以步进点频调谐的方式得到的。
a.基本原理
根据工作原理,频谱分析仪和接收机可分为模拟式和数字式两大类。外差式分析是当前使用最为广泛的接收和分析方法。下面就外差式频谱分析仪与接收机之间的主要差别作一分析。
b.输入RF信号的前端处理
接收机与频谱仪在输入端对信号进行的处理是不同的。
频谱仪的信号输入端通常有一组较为简单的低通滤波器,而接收机要采用对宽带信号有较强的抗扰能力的预选器。通常包括一组固定带通滤波器和一组跟踪滤波器,完成对信号的预选。
由于RF信号的谐波、交调和其它杂散信号的影响,造成频谱仪和接收机测试误差。相对于频谱仪而言,接收机需要更高的精度,这要求在接收机的前端比普通频谱仪多出一个预选器,提高选择性。
接收机的选择性在GB/T6113(CISPR16)中有明确规定。
c.本振信号的调节
现在的EMC测量,人们不止要求能手动调谐搜索频率点,也需要快速直观观察EUT的频率电平特性。这就是要求本振信号既能测试规定的频率点,也能够在一定频率范围扫描。
频谱仪是通过扫频信号源实现扫频测量的。通常通过斜波或锯齿波信号控制扫频信号源,在预设的频率跨度内扫描,获得期望的混频输出信号。
接收机的频率扫描是步进的,离散的,是离散的点频测试。接收机按照操作者预先设定的频率
上一篇:基于ZigBee和S3C2440的手持式校准仪研制方案
下一篇:NF-5035助力汽车电子电磁兼容检测
推荐阅读最新更新时间:2024-03-30 22:29
频谱分析仪和信号分析仪的区别方法
频谱分析仪的频率范围宽,灵敏度高,非常适于通信设备和链路的频率分布测量,缺点是只能获得输入信号的幅值.矢量信号分析仪频率范围较低,利用FFT的特点能够同时获得幅度和相位,特别地第一、二、三代移动通信,包括蜂窝、GSM和CDMA设备的测量. 在实验室和车间常用的信号测试仪器是电子示波器。人的思维对时间概念比较敏感,每时每刻都与时域事件发生联系,但是信号往往以频率形式出现,用示波器观察简单的调幅载波信号也不方便,往往显示载波时看不清调制仪,屏幕上获得的是三条谱线,即载频和在载频左右的调制频。调制方式越复杂,电子示波器越难显示,频谱分析器的表达能力强,频谱分析仪是名副其实的频域仪器的代表。沟通时间一频率的数字表达方法就是傅里叶变换,
[测试测量]
频谱分析仪的时域应用与分析
频谱仪一般是一种非时域工具,主要描述信号在频域上的变化(用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量),在时域上使用得并不广泛。不过,RIGOL DSA1000系列频谱仪提供的上位机应用工具Ultra Spectrum可以支持这方面的应用。 频谱仪时域应用与分析是建立在频谱数据在时间域上存储(频谱数据+时间信息)形成的数据集基础之上的,通过对该数据集的分析可以得出相关测量结论。下面将结合这一工具来解决分析被测件异常信号(隐含信号)的问题。 频谱仪时域应用与分析:捕获隐含信号 有应用价值的信号(例如通讯领域使用的信号)一般都是周期性信号,信号发生的过程携带着时间信息。RIGOL DSA1000系列频谱
[测试测量]
MDO3000如何在一台示波器上实现六种独立仪器的功能
无线技术进入嵌入式系统后,使得测试与测量工作变得越来越复杂,一个系统的高效调试和故障查询往往需要多台测试设备来完成,这也使得测试工具的费用越来越昂贵,集成式多合一示波器对设计工程师来讲极具吸引力。 日前,泰克公司(Tektronix)推出MDO3000系列混合域示波器。泰克公司时域业务部总经理Mike Flaherty表示,MDO3000中包括了示波器、频谱分析仪、逻辑分析仪、协议分析仪、任意函数发生器和数字万用表,在一台小型的便捷式仪器中可同时提供6种独立仪器的功能。MDO3000能够取代设计工作台上各种昂贵的专用设备,提供对几乎全部嵌入式设计进行测试和调试所需的各种工具。此外,泰克MDO3000是完全可定制的,使客户能够选择现在
[测试测量]
频谱分析仪使用常见问题解答
频谱分析仪是一种多用途的电子测量仪器,它主要是测量信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数。长期的使用频谱分析仪,会由于种种因素出现故障的发生。小编在此总结出6条频谱分析仪常见问题,供大家了解。 1.怎样设置才能获得频谱仪最佳的灵敏度,以方便观测小信号 A:首先根据被测小信号的大小设置相应的中心频率、扫宽(SPAN)以及参考电平;然后在频谱分析仪没有出现过载提示的情况下逐步降低衰减值;如果此时被测小信号的信噪比小于15dB,就逐步减小RBW,RBW越小,频谱分析仪的底噪越低,灵敏度就越高。 如果频谱分析仪有预放,打开预放。预放开,可以提高频谱分析仪的噪声系数,从而提高了灵敏度。对于信噪比不高的小
[测试测量]
基于软件定义无线电的实时频谱分析仪功能概述(三)RF接收器前端
RF接收器前端和捕获控制器功能框图中的接收器部分显示了虹科HK-R5550中RFE的框图,该体系结构由一个超外差(SH)前端和一个后端组成,该后端利用了与直接转换(或零中频)接收器类似的I/Q混频器。 根据要分析的信号的频率来选择三个接收器信号处理路径其中之一,频率范围为9kHz至50MHz的信号被直接数字化,而所有其他信号则通过其他两个信号处理路径中的一个转换为第一个IF块的频率。IF模块由一组多个SAW滤波器组成,SAW滤波器的选择取决于输入信号的频率,SAW滤波器的输出馈入I/Q混频器。 这三种信号处理路径进一步分为捕获引擎的不同操作模式,射频前端模式 ZIF、SH、SHN和HDR支持中心频率在50MHz到特定产品模
[测试测量]
医学超声成像
医学超声成像(超声检查、超声诊断学,sonography)是一种基于超声波的医学影像学诊断技术,使肌肉和内脏器官 - 包括其大小、结构和病理学病灶——可视化。产科超声检查在妊娠时的产前诊断广泛使用。 超声频率的选择是对影像的空间分辨率和患者探查深度的折中。典型的诊断超声扫描操作采用的频率范围为2至13MHz。 虽然物理学上使用的名词“超声”用于指所有频率在人耳听阈上限(20KHz)以上,但在医学影像学中通常指频带比其高百倍以上的声波。 什么是超声波? 超声波是指任何声波或振动,其频率超過人类耳朵可以听到的最高阈值20KHz。超声波由于其高频特性而被广泛应用于众多领域,比如金属探伤、工件清洗等
[医疗电子]
R&S为FSL频谱分析仪新增WLAN测量功能
罗德史瓦兹(Rohde & Schwarz,R&S)推出FSL频谱分析仪,适合研发、维修服务和生产线应用;该公司并进一步开发出针对该频谱分析仪设计的WLAN应用固件方案FSL-K91,具备20MHz的I/Q解调带宽,显示平均噪声位准-152dBm(每1Hz)以及不超过0.5dB的综合测量误差。可在信号频谱及调变方面依循IEEE802.11a/b/g/j无线网络标准,提供测量解决方案。 R&S表示,IEEE802.11/a/b/g/j无线网络标准已定义完毕且数据传输率达54Mbps,信号依循IEEE802.11a/b/g/j所定的正交性分频多任务法(OFDM)传输,然而,IEEE802.11b/g信号偶尔也会使用CCK或者是PBC
[新品]
频谱分析仪原理
频谱分析仪原理 频谱分析仪基本原理实现框图 频谱分析仪对于信号分析来说是不可少的。它是利用频率域对信号进行分析、研究,同时也应用于诸多领域,如通讯发射机以及干扰信号的测量,频谱的监测,器件的特性分析等等,各行各业、各个部门对频谱分析仪应用的侧重点也不尽相同。下面结合我台DSNG卫星移动站的工作特点,就电视信号传输过程中利用频谱分析仪捕捉卫星信标,监控地面站工作状态等方面,简要介绍一下频谱分析仪的工作原理。 科学发展到今天,我们可以用许多方法测量一个信号,不管它是什么信号。通常所用的最基本的仪器是示波器,观察信号的波形、频率、幅度等。但信号的变化非常复杂,许多信息是用示波器检测不出来的,如果我们要恢复一个非正弦波信
[模拟电子]