矢量信号分析仪在非线性失真的检测方案中的应用介绍

发布者:meilidaowl最新更新时间:2012-09-19 来源: 21ic 关键字:矢量信号  分析仪  非线性失真 手机看文章 扫描二维码
随时随地手机看文章

移动通信网络所用功率放大器的一个关键性能参数为 非线性失真。但过度的非线性失真会使误码率( BER)提高,导致移动通信网络中所传输的语音及数据信号质量下降。幸运的是,该矢量信号分析仪不仅可以用于精确地检测矢量及标量的调制误差,如误差向量幅度( EVM)特性,还可用于评估放大器及系统失真特性。因分析仪进行有效测量时亦无需任何特殊检测环境或检测信号,该分析仪可在移动通信网络正常运行的情况下分析来自基站的冲击信号。

通常依赖量程可调的伏特计或频谱分析仪,采用双音或多音方法1来确定被测器件(DUT)的压缩点。网络分析仪采用功率扫描作类似分析。这两种方法中所用的信号皆为测试信号或是仅仅优化用于频谱带宽或统计分布的信号,并非实际工作环境下的信号。   

可以利用矢量信号分析仪来测量标量、矢量调制参数及数字调制移动无线信号的调制误差。按现代的理念,因在常规的测量过程中已收集了所有必要的数据,这些设备也应可以测量及评估线性误差。实际上,只需要一套标准的测试设备,并不需要附加的测量设备或特殊测试信号。   
图1所示为一组典型的、使用矢量信号分析仪进行测量的测试配置。带同相、正交调制能力的信号发生器产生一个RF移动无线信号,并将其送至被测器件(DUT,如移动通信输出放大器)的输入端。放大器的输出端通过衰减器(避免仪器工作范围外的高压)与矢量信号分析仪(如Rohde&Schwarz公司的FSQ-K70)输入端相连。甚至可用这一组设备直接测量基站的RF输出信号。   

图2为矢量信号分析仪的框图。经数字调制的RF输入信号通过RF及中频级(模块1、2)前往模-数转换器的输入端(模块数字信号处理器 DSP对基带信号解调至位级(图2中模块7),并产生一个与非失真发射信号相应的基准信号。信号分析仪仅需了解调制结构及适当滤波(模块8)。在对中心频率偏移、相位及符号定时(图2,同步模块9)校准后,被测信号的幅度和相位与基准信号相适应,以取得EVM的均方根值( RMS)。在最后一级中,将被测信号与参考信号进行比较(图2模块11)。在此时对典型调制误差(如与时间对应的幅度误差,与时间对应的相位误差)进行计算。这些信号用于表示矢量及星座图或用于在以后计算失真特性。   




  
  



  
图3(a)所示为经上升余弦滤波的未失真的16态正交振幅调制信号的理想星座图。图3(b)所示为纯幅度失真放大器的输出信号。两图中都标识了复杂基带信号的矢量图。实际的星座点(图3(b))在其理想位置的附近。栅格的曲率一定程度上表示了非线性、基于幅度调制的幅度失真。图3 (c)所示为幅度-时间特性。理想信号为蓝色曲线,实际信号为红色曲线。为便于识别,用正方形或圆标识符号时间。该理想信号的三个幅度等级用R1至R3的水平线表示,而测量信号则用D1至D3的水平线表示。   

尽管理想信号与实际信号在低电平段其本相吻合,但随着电平的增大,偏离加大。若用x/y坐标来表示各电平上的失真信号取样与其对应的理想信号取样,则所得结果便为调制―振幅特性。为了更好地判定,该电平段也可以表示为直线。特性曲线与对数线(线性增益)的偏离,即为放大器非线性失真的量度[见Figs.3(a)及3(b)]。   



  
实际上,可用理想信号与实际信号的信号比或用理想信号与实际信号间差值信号的对数值来描述失真特性。若用x/y坐标描绘每个信号差值样本与理想信号,则所得结果即为AM/AM失真特性(基于振幅的振幅失真)。将所有的测试点标入特性曲线中。这样,特性曲线与水平0-dB线间的偏离即为非线性失真量,见[图3(e)和图3(f)]。将相位误差看作AM/PM特性曲线理想幅度的函数(基于振幅的相位失真),从而可得到相位误差。 [page]  

在分析仪工作过程中,用解调位(比特)重建理想信号。这样就无需知道之前的发射数据序列或理想I/Q取样。根据以上所述方法,通过比较理想信号与测量信号,即可确定实际特性。这使得放大器可在以后的精确工作模式上被测量。   

为计算调制误差,分析仪通过将符号时间的 EVM的有效值( RMS)最小化来适配测量信号。有关这类的适配,在常见的移动无线标准(如 EDGE)中有具体描述。

图4所示为标有符号时间、经适配之后的误差信号。以对数形式表达其与参考信号的关系,可以发现,适配导致测量点及内插压缩曲线在垂直方向上略有偏移[图3(f)及4(b)]。

插值后,用两个记号标记压缩点,其水平间隔固定为10dB。通过在特性曲线上移动记号来决定两记号垂直间隔为1dB的点。此时,标为记号C的该位置即表示1dB压缩点,见图4(b)。   

图4(c)及4(d)所示为带上升余弦发射 滤波的16 QAM调制方案的实际测量结果。该发射滤波并不需要接收滤波器并能自动产生符号间无干扰(即,集中的)的星座点。适配产生如下图形:即星座点的位置被轻微地向高电平移动。中间位置的星座图看起来相符,而具有高电平的外部点向内微移。   

通过插入所有的测量点[见图4(d)的上半部]可得放大器的AM/AM失真曲线。图4(d)底部所示为AM/PM曲线,即用x/y轴表示的信号的相位差与理想信号电平的关系。在适配后这两个特性曲线在垂直方向上都有移动,但对压缩点的微分计算通常还能提供正确的数值。   

该失真测量新方法也可与所有线性调制方案及任一类型的发射滤波器一道采用。然而,新方法要求一个没有接收滤波的测量信号。任何有带宽限制的接收滤波,将因为滤波器的冲击响应被分配到一定量的符号周期上,从而导致非线性效应。结果将造成信号特性的恶化。   

为解释新的失真测量方法,用基于 EDGE移动无线标准的冲击信号作为例子。数字标准EDGE使用3?/8-8PSK调制方案。对于发射机,有一个特殊的滤波器,该滤波器无符号间干扰。做为示范测试的一部分,EDGE冲击信号被解调,并将测试结果距离对齐,按同步序列的位置排列并限制在该冲击信号有效范围(有用部分)内。这样,冲击信号的边缘及之外的区域就不会被用于测量分析。   

对于宽带、双极小信号放大器(没有显示)的测量,矢量信号分析仪计算所加的采样输入功率,确定压缩点及相位误差,并按绝对刻度显示。对于这一放大器,计算出来的1dB压缩点为+10.36dBm(被测部件的输出电平),相位失真为8.71deg。除了这些电平及相位特性之外,对平均功率电平与峰值因子(峰值与平均功率的比值)的比较可提供与DUT失真相关的更多信息。这些测量结果显示:平均功率压缩为0.68dB、峰值因子下降了0.82dB。   

这套最先进的矢量信号分析仪,使得非线性失真特性及调制相关的压缩参数的测量变得非常容易。这套检测设备还可用于传统的矢量分析及失真测量,还可以直接验证功率放大器的预矫正的有效性,而不像其它检测设备,如 EVM那样,只能通过推断才能实现。   

关键字:矢量信号  分析仪  非线性失真 引用地址:矢量信号分析仪在非线性失真的检测方案中的应用介绍

上一篇:特性阻抗测试仪Qmax CIMS1000功能及特点介绍
下一篇:采用PNA矢量网络分析仪的脉冲信号S参数测量解决方案设计

推荐阅读最新更新时间:2024-03-30 22:30

安捷伦惠普HP8753系列网络分析仪校准参数设置
首先我们进行校准前的参数设置。通过按键板的【Start】和【Stop】按键来设置起始和终止频率,比如30kHz~6GHz,设置完成屏幕的底部会显示。 接下来再设置需要校验的点数,如1601点。通过【SweepSetup】菜单的【NUMBERofPOINTS】按键来设置。 基本参数设置完就需要确认一下校准参数了,通过点击按键【Cal】选择【CALKIT7mm】选项可以去选择对应的校准件。 我就不选了,直接默认来做操作演示。 同时也可以在【MODIFY】-- 【DEFINESTANDARD】 【MODIFYSTDDEFINITION】里修改校准件参数。 当确认好以上这件基本参数设置后就可以直接开始校准了。
[测试测量]
安捷伦惠普HP8753系列网络<font color='red'>分析仪</font>校准参数设置
全自动生化分析仪的设计
  全自动生化分析仪是医院的常规设备,是用来检验病人体液中各种化学物质的一种仪器,从二十世纪六十年代第一台生化分析仪诞生以来,它的发展可谓突飞猛进。目前的生化分析仪在精确度,制造精度以及功能等各方面都已经达到了非常高的水平。我国的生化分析仪制造水平与国际水平相比有很大的差距,我国目前生产的小型全自动生化分析仪,由于仍然使用流动比色皿,其分析速度比较低,精度也难以达到较高的水平。纵观各国生化分析仪厂家的产品,绝大部分都采用了分立式比色皿,这种比色皿相互分立,彼此之间没有交叉污染,比色皿的个数也可以根据需要进行放置,这样,仪器的精度和速度将得到很大的提高,深受广大医院的欢迎。下面介绍我们的设计要点。 1 硬 件   生化分析仪主要是
[测试测量]
全自动生化<font color='red'>分析仪</font>的设计
毫米波测试解决方案之频谱分析仪
在写这篇文章的时候,我其实也没有怎么做过毫米波测试,我相信正在读这篇文章的读者中大部分也没有怎么接触过毫米波测试。那么我们为什么还要这么专注于毫米波测试呢? 在几年以前,我根本无法想象这么短时间内行业内会对毫米波应用有这么高的关注度。那时候,做为测试工程师的我,了解30GHz 到300GHz的测试仪器还只是像一个穷学生看到橱窗里的Allianware笔记本电脑的情景:“ 酷!太牛了!等我月入10w的时候一定也买一台” 然后就… … …没有然后了。 然而仅仅过了几年,40G的信号源,50G的频谱仪,67G的网分我都有幸使用了一番。 当前毫米波应用主要集中在以下几个行业上: 能够完整提供毫米波测量解决方案的仪器厂商主要是是德(安
[测试测量]
毫米波测试解决方案之频谱<font color='red'>分析仪</font>
浅谈二维微机电(MEMS)阵列对移动光谱分析仪的影响
在近红外(NIR)光谱分析领域中,一个将便携性与高性能实验室系统的准确性和功能性组合在一起的系统将极大地改进实时分析。由一块电池供电的小型手持式光谱分析仪的开发可以实现对工业过程、或食品成熟度的评估在现场进行更有效的监控。 大多数色散光谱分析测量在一开始采用的都是同样的方式。被分析的光通过一个小狭缝;这个狭缝与一个光栅组合在一起,共同控制这个仪器的分辨率。这个衍射光栅专门设计用于以已知的角度反射不同波长的光。这个波长的空间分离使得其它系统可以根据波长来测量光强度。 传统光谱测量架构的主要不同之处在于散射光的测量方式。两种常见的方法有(1)与散射光物理扫描组合在一起的单元素(或单点)探测器,以及(2)将散射光在一组探测器上成
[测试测量]
浅谈二维微机电(MEMS)阵列对移动光谱<font color='red'>分析仪</font>的影响
基于R&S的矢量源和信号分析仪构建无线系统仿真平台的方案
在民用和军用领域,随着无线通信系统的发展,新器件、新工艺、新产品层出不穷,也使得新的通信系统越来越复杂。为了保证设计的准确性,同时缩短相应的设计周期,需要在设计初期就开始对系统进行相应的仿真和验证,同时对于各个阶段完成的不同模块也要进行分别的仿真和测试。虽然各类大型的EDA软件相继成熟,针对不同的领域都有不同的专业软件,为完成设计提供了强大的支持。但是,由于缺少实际的被测系统,在系统仿真和模块仿真阶段如何进行相应的验证一直是困扰设计人员的主要问题。因此从设计初期开始就有必要引入相应的测试功能,这也是整个无线系统设计的重点和难点。 基于罗德与施瓦茨(R&S)公司的矢量源和信号分析仪可以充分利用仿真设计软件的优势,构建无线系统的通
[测试测量]
基于R&S的矢量源和信号<font color='red'>分析仪</font>构建无线系统仿真平台的方案
便携式功率分析仪设计-----频率部分电路设计(一)
频率部分电路设计 3.5.1常用测频方法微波信号的频率在微波通信、雷达、导航等微波工程中是表征微波信号特性的主要参量之一。 频率是表征周期现象的一种参数,定义为物体每秒振动的周期数,单位是赫兹(Hz)。微波电磁振荡也属于这个现象。从物理学知道,电磁振荡实质上是最简单的简谐振动。即使是非简谐振动,也可以看成是许多不同频率、相位的简谐振动之和。因此微波信号的一般表达式常写成     式中A为振幅,ω为角频率,f为频率,ψ为初相位。式(3-11)说明,表征微波信号的参数有振幅、频率和相位,就其常用者是前两个。关于振幅的测量即为功率测测量所以频率测量是功率分析中的重要组成部分。 频率测量方法目前普通采用电子计数器测量
[电源管理]
便携式功率<font color='red'>分析仪</font>设计-----频率部分电路设计(一)
噪声测试的五大技巧 - 提高分析仪灵敏度和扫描速度
噪声是电子电路的特性之一,它会导致发射机和接收机之间有用信息的随机干扰。因此,它是测试所有发射机和接收机组件的一个基本参数。因为通常上,它能够限制任何无线系统的整体性能。由于信号和频谱分析仪是高性能的宽带接收机,在保持高精度和快速扫描的同时,其内部的噪声会影响极低幅度信号的测量。本指南介绍了使用此类分析仪时最重要的五大技巧,用以帮助用户提高小信号测量的灵敏度和精度,尤其针对噪声附近的信号。 技巧 1:降低分辨率带宽 图 1 展示了相同低幅度信号的测量,经过调整分析仪的设置,可以改善该仪器的本底噪声。首先,上方迹线(黄色)显示了一个典型的测量结果,此时信号分析仪配置有 100 kHz 分辨率带宽(RBW)的滤波器 和 10 dB
[测试测量]
噪声测试的五大技巧 - 提高<font color='red'>分析仪</font>灵敏度和扫描速度
比较逻辑分析仪与示波器之间的区别
目前电路的发展从抽象类似向着数字化发展,因此这些测量仪器的开发也正在朝着这种条件方法迈进。 现在,在参考测量方面,我们首先想到的是示波器,特别是那些对示波器有很高认识的老工程师。 逻辑分析仪是一种非常适合单片机类数字系统测量分析的新型测量工具。 在通信分析中比示波器更方便,更强大。 在示波器方面,示波器可以测量电压信号并显示出来,可以通过示波器的旋钮来测量电压的幅度和时间。示波器平常较多的用途就是测量供电电压是不是稳定,如果出现毛刺,特别是刚上电的时候,变压器上会出现电压尖峰冲击,示波器可以明显的看到。示波器对高电压也能够很好的显示,测量范围比较宽,可以动态显示被测信号,实时显示被测信号。对时间较长的波形,比如流水灯,十几分钟
[测试测量]
比较逻辑<font color='red'>分析仪</font>与示波器之间的区别
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved