使用矢量分析对RF进行有效测量

发布者:HarmoniousSoul最新更新时间:2012-11-30 来源: 21IC 关键字:矢量分析  RF  有效测量  信号监视 手机看文章 扫描二维码
随时随地手机看文章

  随着宽带通信系统和其它高性能RF技术不断发展,测量系统也必须与之保持同步。过去,频谱分析对于大多数一般性应用来讲己经足够,矢量分析只用于更为特殊的测量中,如国防和信号监视场合。但矢量分析对测量快速移动的宽带与扩频信号非常重要,而且它在通用RF信号分析中也有很多优点,可以极大提高测量速度。

  RP测量一般可分为三大类,即频谱分析、矢量分析和网络分析。频谱分析通常采用频谱分析仪,它能够提供基本测量,在许多通用场合是用得最多的RF仪器,特别是用这类仪器可以观察到功率与频率之间的相关信息,有时还能对AM、FM和PM之类的模拟格式进行解调。矢量仪器包括矢量或实时信号分析仪,这类仪器可分析宽带波形并从感兴趣的信号中捕获有关时间、频率和功率方面的数据。网络分析仪一般用于RF元件的S参数测量。

  更专业的RF仪器称为“测试台”,针对特定的协仪或标准如蓝牙、GSM或802.11无线网络等做复杂测量。虽然价格昂贵,但它能够按指定标准一次性完成所有必要的测量,可加快测试程序的开发,不过一般情况下速度比通用仪器慢。由于这一原因,它更适用于设计和开发,而在制造测试环境下会给成本带来压力。

  所有这些仪器——频谱分析仪、矢量分析仪、网络分析仪和测试台——为用户提供了不同的功能,它们要么建立在标量基础上要么建立在矢量结构上,各有优点和缺点。标量结构一般制造费用较低,在噪声和相噪声方面能提供优越的性能。但因为是一种窄带结构,它不太适合分析目前日益普遍应用的宽带信号;此外它只能对观察信号给出两维(功率与频率的关系)信息,而且一般比矢量结构要慢。

 

  通信技术的发展

  近十年来,宽带已越来越变成一个重要的考虑因素,对更宽带宽和更大容量的要求迫使通信系统从窄带向具有高数据率的宽带转移。我们先来看一看通信技术的发展情况。

  多年以来AM和FM无线电及传统电话一直是最普遍使用的通信方式,这些系统的数据传输速率较低,需要的带宽也有限,例如电话为8kHz,FM无线电为200kHz。但我们如今正在向3G蜂窝系统方向发展,这一系统使用5MHz频带,而像蓝牙和IEEE802.11b无线网络技术均要占据80MHz频带,两者分别使用1MHz和22MHz信道,如此高的宽带与QPSK、FSK、GMSK和QAM等数字调制格式结合在一起,可以达到所要求的高数据率。

  许多目前使用的通信技术已经存在多年,但一直仅限于军事和国防应用,很多调制方案、宽带发送器、扩频性能和RF发送与接收等都源于军事应用。如今随着在研究和开发领域的大量投资,以及半导体性价比大幅增长,复杂的RF性能也在商业领域中逐渐得到应用。RF技术现在已融入到多种产品中,从电话到汽车钥匙,而TV系统、卫星和电缆通信调制器之类的宽带应用也采用了RF技术。

         通过矢量分析改进RF测量技术

  为精确捕获和表征现代宽带系统,测量也需要从窄带测量设备向宽带矢量仪器转换,如果使用仪器的带宽等于或大于发送器带宽,就可以保证能捕获被测器件所有发送的信号。

  虽然矢量仪器的价格一般高于标量仪器,但它能提供更快的测量速度,产生更复杂的信号。特别是矢量仪器比频谱分析仪之类的窄带仪器所使用的滤波器频带更宽,这样就减少了对滤波器进行重新调谐的次数,使矢量仪器能更快完成对整个频谱的扫描。矢量结构还能产生大多数通信系统所使用的调制波形之类的复杂信号。

  当选择矢量仪器测量宽带信号时,需要同时考虑被测器件带宽和所有其它测量因素。例如你可能对分析仅有4MHz带宽的数字卫星信号感兴趣,但同时也必须测量相邻信道的功率,以确定发送器信号侵入其它服务运营商使用通道的功率符合政府规定的规范要求,对这种测量来说,矢量仪器的实时带宽至少应为器件带宽的三倍。

  除了捕获宽带信号外,矢量仪器还能为测量应用提供许多其它重要优点。例如对一个跨度很大的频率范围进行频谱扫描或其它测量时,矢量分析仪很宽的实时带宽可以极大节省测试时间。像国家仪器公司的新型RF信号分析仪具有20MHz实时带宽,其测量速度是传统仪器的30~200倍。

  对于各种通用频谱的采集,矢量仪器速度更快且测量次数更多,矢量分析仪能够采集到相位信息、幅值和频率,传统仪器一般做不到。你可以使用同一性能同时捕获和显示频率及时间信息,这对时间-频率分析和显示3D频谱图或瀑布图非常有用;另外还可以在I-Q或调制分析中使用带频率的相位信息,得到被测信号更为详细的视图,这些优点都使矢量分析仪比传统频率分析仪功能更为强大,更具灵活性。

  图1是频谱分析仪采集到的调频信号的频谱,显示图里没有任何动态信息,既没有频谱变化率,也没有调制在载波上的内容信号。图2是矢量分析仪显示的频谱图,即输入信号的时间-频率分析图。这是一个动态信号频谱图,表现了FM波形随时间变化的关系,它使调制频率下的内容信号(这里为正弦波)清晰可见。传统频谱分析仪不能显示频谱图,所以不适合用来进行调制分析。

关键字:矢量分析  RF  有效测量  信号监视 引用地址:使用矢量分析对RF进行有效测量

上一篇:浅析安捷伦非信令测试和LTE测试方案
下一篇:PCIE3.0的发射机物理层测试

推荐阅读最新更新时间:2024-03-30 22:32

安捷伦的IP数据连接和RAT间话音、数据增强功能支持对无线UMTS用户设备的强化测试
(2007年5月9日,北京)—— 安捷伦科技公司(NYSE:A)近日推出全新的7.2 Mbps IP数据连接和RAT间话音和数据切换增强功能,使其运行UMTS实验室应用软件的8960无线通讯测试仪如虎添翼。 这些增强功能基于8960实验室应用软件之上,为满足各种用户设备(UE)的设计需求提供了最广泛、最经济高效的台式解决方案,包括用于设备验证、集成和回归测试的功能测试和射频测量。作为第一款集7.2 Mbps HSDPA IP数据连接和实时3GPP网络仿真――包括RAT间话音和数据切换――两大特性于一身的综合测试仪,8960为工程师提供了能在设计过程初期使用的工具,确保在整个测试和部署周期内UE设计的完整性。 安捷伦创新的7.2
[新品]
国产射频滤波器如何抓住5G这一黄金机遇
射频滤波器:射频前端中价值量最大的细分领域 射频滤波器的产品类别 手机终端的通信模块主要由天线、射频前端模块、射频收发模块、基带信号处理等组成。射频前端介于天线和射频收发模块之间,是移动智能终端产品的重要组成部分。射频前端器件主要包括滤波器(Filters)、低噪声放大器(LNA)、功率放大器(PA)、射频开关(RF Switch)、天线调谐开关(RF Antenna Switch)、双工器(duplexer)等。其中滤波器的功能是通过电容、电感、电阻等电学元件组合来将特定频率外的信号滤除,保留特定频段内的信号。 目前手机中常用的滤波器产品形态包括: (1)声表面波滤波器(Saw Filter,Surfa
[网络通信]
国产<font color='red'>射频</font>滤波器如何抓住5G这一黄金机遇
基于RF电路设计中的常见问题及解决方案
单片 射频 器件大大方便了一定范围内 无线 通信领域的应用,采用合适的微 控制 器和天线并结合此收发器件即可构成完整的 无线 通信链路。它们可以集成在一块很小的 电路 板上,应用于无线数字音频、数字视频数据传输系统,无线遥控和遥测系统,无线数据采集系统,无线网络以及无线安全防范系统等众多领域。 1  数字电路与 模拟 电路的潜在矛盾 如果模拟电路(射频) 和数字电路(微控制器) 单独工作可能各自工作良好,但是一旦将两者放在同一块电路板上,使用同一个 电源 供电一起工作,整个系统很可能就会不稳定。这主要是因为数字信号频繁的在地和正 电源 (大小3 V) 之间摆动,而且周期特别短,常常是ns 级的。由于较大的振幅和较小的切换时间,
[模拟电子]
解析射频信号源具体组成部分
射频信号源具体的组成部分主要有以下几个部分:AC-DC 电源板、数字板、射频板、OCXO 板、DC-DC 电源板、键盘板、倍频板、ATT 板、IQ 板、LCD 板。我上面分的比较细,如果一些低频的源,他是没有倍频板和 ATT 板的,或者说频率不高的话,倍频的功能可以集成在射频板上。 AC-DC 电源板 主要是将市电的交流电压转换成直流电,然后给 DC-DC 电源板供电。 DC-DC 电源板 该模块用于将 AC-DC 模块输出的电压降至一定的值,经过转换来满足各个功能单元正常工作需要的电源(电压和电流),比如风扇的供电,及其它板子(诸如射频板和倍频板)等的供电都是通过 DC-DC 电源板来提供的。 数字主板 数字主板上存
[测试测量]
频谱分析仪深入学,射频分析很简单!
频谱分析仪(以下称频谱仪)是射频领域进行信号测试分析的基础仪器,帮助射频工程师完成信号频率与功率的测量。频谱仪发展至今,衍生出如:超外差式频谱仪,信号分析仪,实时频谱仪等多种名称,虽然叫法不同,但主要功能都还是进行射频/微波信号的测量,只是在处理/分析信号及扩展性上各有侧重。随着各仪器厂家技术的进步,频谱仪的精度越来越高,分析功能越来越多,价格也越来越高,对于广大中小企业而言,频谱仪的投入往往是一件大事,那么,是否有一种可能选择到性价比高的产品的同时也兼顾到信号测量的精度呢?今天我们就来谈谈如何在使用频谱仪测量时进行必要的优化。 1. 优化低电平测量的灵敏度 频谱仪对低电平信号的测量能力受限于频谱仪的内部噪声。频谱仪内部混频器
[测试测量]
频谱<font color='red'>分析</font>仪深入学,<font color='red'>射频</font><font color='red'>分析</font>很简单!
简易视频信号射频调制器电路设计
  最近因录像机内视频信号 射频 调制器损坏,一时配件又难购买到.造成无法观看录像节目;为此自制了一台简易视频信号射频调制器,使用效果不错。该调制器原理简单,制作大便,对 元件 无特殊要求,很适合业余爱好者制作。   射频调频器的电路如图1所示。由R3、C2、R1、R2、R4、BG1组成射极跟随器.对视频信号进行适量放大。C1是耦合电容,R5、L2、L3、L4、C4、C6、R6等组成π型低通滤波器,BG2、L1、C7等组成图像载波振荡电路,它的频率是根据选用的电视接收频道决定的。本机选用VHF频段的第1频道。C1、C9为谐振电容,C9容量很小,使用2-3cm长的单股塑料绝缘线绞合而成,通过调整它的绞合度可以改变信号的耦合度
[电源管理]
简易视频<font color='red'>信号</font><font color='red'>射频</font>调制器电路设计
高性能RF收发器CC900及其应用
1 概述   CC900是美国Chipcon Component公司生产的单片高性能UHF收发器,适用于低功率、低电压的无线通讯,是一种高集成、高灵敏、高性能的RF收发芯片。该芯征主要应用于工科医用频段ISM和短距离仪器SRD应用方面,工作频率范围在800~1000MHz,载波频率和发射输出功率均可通过编程确定,其范围为-20~4dBm。CC900的主要性能参数如下:   ●工作频率可编程设置,范围为800~1000MHz;   ●编程设置的工作频率步长为250Hz;   ●输出功率可编程设备,范围为-20~4dBm;   ●接收灵敏度为-110dBm;   ●采用2.7~3.3V单电源电压供电;   ●带有FSK调
[医疗电子]
高性能<font color='red'>RF</font>收发器CC900及其应用
矢量信号发生器与射频信号源介绍以及两者的区别
信号源可为各种元器件和系统测试应用提供精确且高度稳定的测试信号。信号发生器则增加了精确的调制功能,可以帮助模拟系统信号,进行接收机性能测试。矢量信号与射频信号源都可以作为测试信号源,下面我们分析下有各自的特点。 AFG31000任意波函数发生器 一、矢量信号发生器介绍 矢量信号发生器出现于20世纪80年代,采用中频矢量调制方式结合射频下变频方式产生矢量调制信号。原理是运用频率合成单元产生连续可变的微波本振信号和一个频率固定的中频信号。中频信号和基带信号进入矢量调制器产生载波频率固定的中频矢量调制信号(载波频率就是点频信号的频率),此信号和连续可变的微波本振信号进行混频,产生连续可变的射频信号。射频信号含有和中频矢量调制信号相同
[测试测量]
<font color='red'>矢量</font><font color='red'>信号</font>发生器与<font color='red'>射频</font><font color='red'>信号</font>源介绍以及两者的区别
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved