1.引言
振动直接影响到风机的安全稳定运行,严重时还会导致设备损坏等恶性事故的发生。在对风机振动进行监测时,厂方大都只重视振动的幅值,即以振动的大小作为振动监测、分析和状态检测的依据。这种方法虽然在多数情况下有效,但在一些特殊情况下,却会掩盖振动现象,造成技术人员的误解。随着现代测试技术的发展,振动相位的测量技术已越来越可靠。技术人员通过振动相位测量,对振动问题的认识将会大大加深。本文结合笔者处理过的几台风机振动故障,介绍了基于振动幅值和相位的矢量监测模型以及相位在振动分析中的重要性。
2.相位的概念和测量方法
如图1所示,在旋转轴上开一缺口,用涡流传感器对准转轴,当轴上缺口转到涡流传感器处时,涡流传感器脉冲输出。同时用振动传感器测量轴的振动,得到相应的轴振信号,比较轴振信号与脉冲信号,求出脉冲到其后振动信号最大点之间的角度差,即以此为相位。键相脉冲的产生也可以通过在转轴上刷黑漆和贴反光带,利用光电传感器光电效应的方法来获取。 3.振动矢量的概念
振动监测时,厂方大都只重视振动的大小。当振动超过设定阈值后,就开始报警或自动停机。这种方法实际上是把振动问题简单化,也就是把振动量作为一个标量来看待。有了相位后,对振动问题的认识除了大小外还有角度。此时振动就可以用如图2所示的“靶图”来表示。振动问题由此而成为一个矢量概念。在透平机械振动监测中,已有一些国家采用联合振动幅值和角度的矢量模型对机组进行监测。这种方法是以某一区域作为安全区,一旦振动矢量点落到安全区外,机组便会报警或采取保护动作。 4.基于振动矢量的风机振动分析案例
某台轴流压缩机大修后开机,运行中发现振动较大。该机振动经常在50~70μm之间变化。考虑到振动变化幅度在20μm左右,而振动的基数为50μm,明显偏大,起初简单地认为该机振动只是一平衡问题。但当到现场测试时,发现情况完全不同。机组开机?h内的振动变化可以简单地表示为60∠90°→50∠180°→70∠260°。虽然振动振幅的变化在50~70μm之间,变化幅度不大,但考虑了相位后,发现振动变化幅度很大,达到了130μm左右。如此大的变化幅度肯定不仅仅是不平衡故障引起的。打开机组检查发现,转子两端气封摩擦很严重,转子表面局部磨得发蓝。进一步检查发现,转子在气缸里倾斜,调整转子与气缸的同心度后,再次开机,振动平稳,通过一次动平衡试验,使运行达到稳定。
5.基于振动矢量的动平衡一次加重法
目前,很多企业风机动平衡工作仍然采用传统的三点法。这种方法只需根据振动幅值,通过在转子圆周上3个方位试加重的方法来确定动平衡配重。这种方法虽然看起来简单,但是机组需要反复启停多次,不仅费时、费力,而且动平衡精度也不是很高。
有了相位后,可以由振动相位推算出不平衡所在角度。以图3所示传感器布置为例进行分析。相位反映的是振动信号高点滞后于键相信号之间的角度,因此,由振动传感器逆转一个相位角,即可找到振动高点P。由振动理论可知,不平衡力总是超前振动高点一个滞后角 ,因此由高点P顺转一个滞后角,即可找到不平衡所在位置Q。不平衡所在位置的对面T就是应该加平衡配重的位置。假设振动相位45°,取滞后角90°,由图3可知,实际加重位置即为由转轴上键相标记逆转225°处。采用这种方法,现场动平衡一次成功的准确率可达70%以上,大大减少了开机次数和工作强度。根据经验,动平衡试验时,试加重的角度比试加重的大小要重要得多,而试加重的角度直接取决于振动相位角。试加重角度正确,加重前后振动则会有明显变化,其后的动平衡过程也会开展得很顺利。 6.结论
相位是振动分析中一个非常重要的参数。有了相位后,人们对振动问题的认识从标量发展到矢量。联合振动幅值和相位的振动矢量监测法会更全面、更早地监测振动故障的发生与发展过程,以加深对振动问题的认识。有了相位后,技术人员可以实现对不平衡故障的一次加重,可大大减少动平衡工作的工作量,同时也能大大提高动平衡精度。
关键字:风机振动 相位 诊断
引用地址:基于矢量的风机振动监测与诊断
振动直接影响到风机的安全稳定运行,严重时还会导致设备损坏等恶性事故的发生。在对风机振动进行监测时,厂方大都只重视振动的幅值,即以振动的大小作为振动监测、分析和状态检测的依据。这种方法虽然在多数情况下有效,但在一些特殊情况下,却会掩盖振动现象,造成技术人员的误解。随着现代测试技术的发展,振动相位的测量技术已越来越可靠。技术人员通过振动相位测量,对振动问题的认识将会大大加深。本文结合笔者处理过的几台风机振动故障,介绍了基于振动幅值和相位的矢量监测模型以及相位在振动分析中的重要性。
2.相位的概念和测量方法
如图1所示,在旋转轴上开一缺口,用涡流传感器对准转轴,当轴上缺口转到涡流传感器处时,涡流传感器脉冲输出。同时用振动传感器测量轴的振动,得到相应的轴振信号,比较轴振信号与脉冲信号,求出脉冲到其后振动信号最大点之间的角度差,即以此为相位。键相脉冲的产生也可以通过在转轴上刷黑漆和贴反光带,利用光电传感器光电效应的方法来获取。 3.振动矢量的概念
振动监测时,厂方大都只重视振动的大小。当振动超过设定阈值后,就开始报警或自动停机。这种方法实际上是把振动问题简单化,也就是把振动量作为一个标量来看待。有了相位后,对振动问题的认识除了大小外还有角度。此时振动就可以用如图2所示的“靶图”来表示。振动问题由此而成为一个矢量概念。在透平机械振动监测中,已有一些国家采用联合振动幅值和角度的矢量模型对机组进行监测。这种方法是以某一区域作为安全区,一旦振动矢量点落到安全区外,机组便会报警或采取保护动作。 4.基于振动矢量的风机振动分析案例
某台轴流压缩机大修后开机,运行中发现振动较大。该机振动经常在50~70μm之间变化。考虑到振动变化幅度在20μm左右,而振动的基数为50μm,明显偏大,起初简单地认为该机振动只是一平衡问题。但当到现场测试时,发现情况完全不同。机组开机?h内的振动变化可以简单地表示为60∠90°→50∠180°→70∠260°。虽然振动振幅的变化在50~70μm之间,变化幅度不大,但考虑了相位后,发现振动变化幅度很大,达到了130μm左右。如此大的变化幅度肯定不仅仅是不平衡故障引起的。打开机组检查发现,转子两端气封摩擦很严重,转子表面局部磨得发蓝。进一步检查发现,转子在气缸里倾斜,调整转子与气缸的同心度后,再次开机,振动平稳,通过一次动平衡试验,使运行达到稳定。
5.基于振动矢量的动平衡一次加重法
目前,很多企业风机动平衡工作仍然采用传统的三点法。这种方法只需根据振动幅值,通过在转子圆周上3个方位试加重的方法来确定动平衡配重。这种方法虽然看起来简单,但是机组需要反复启停多次,不仅费时、费力,而且动平衡精度也不是很高。
有了相位后,可以由振动相位推算出不平衡所在角度。以图3所示传感器布置为例进行分析。相位反映的是振动信号高点滞后于键相信号之间的角度,因此,由振动传感器逆转一个相位角,即可找到振动高点P。由振动理论可知,不平衡力总是超前振动高点一个滞后角 ,因此由高点P顺转一个滞后角,即可找到不平衡所在位置Q。不平衡所在位置的对面T就是应该加平衡配重的位置。假设振动相位45°,取滞后角90°,由图3可知,实际加重位置即为由转轴上键相标记逆转225°处。采用这种方法,现场动平衡一次成功的准确率可达70%以上,大大减少了开机次数和工作强度。根据经验,动平衡试验时,试加重的角度比试加重的大小要重要得多,而试加重的角度直接取决于振动相位角。试加重角度正确,加重前后振动则会有明显变化,其后的动平衡过程也会开展得很顺利。 6.结论
相位是振动分析中一个非常重要的参数。有了相位后,人们对振动问题的认识从标量发展到矢量。联合振动幅值和相位的振动矢量监测法会更全面、更早地监测振动故障的发生与发展过程,以加深对振动问题的认识。有了相位后,技术人员可以实现对不平衡故障的一次加重,可大大减少动平衡工作的工作量,同时也能大大提高动平衡精度。
上一篇:iGPS测量系统实现关键技术及应用
下一篇:FLEXIM高温超声波流量计在锅炉行业应用
推荐阅读最新更新时间:2024-03-30 22:32
气敏传感器胶囊击败传统呼气测试 成为肠道疾病诊断利器
据麦姆斯咨询报道,澳大利墨尔本皇家理工大学(RMIT)的研究人员发明出一款革命性的气敏 传感器 胶囊,可以超越当前诊断肠道疾病的基准——呼气测试,为解决此前未诊断出的病症铺平道路。 目前由Atmo Biosciences实现商业化,维生素药丸大小的胶囊为肠道中的氢气、二氧化碳和氧气提供实时检测和测量,检测出来的数据可以直接发送至手机。 胶囊的共同发明人,墨尔本皇家理工大学的Kyle Berean教授表示,第二次人体试验揭示了先前通过呼吸间接测量被掩盖的肠道内气体产生的信息。 Berean同时也是Atmo Bioscience公司的首席技术官(CTO),他解释道,“呼吸测试会有一定的假阳性和假阴性的误诊断率,这是胃肠病学存在的一个亟
[医疗电子]
TDK-Lambda体外诊断仪器供电系统整体解决方案
受益于生活水平的提高、医疗消费升级、医疗改革的推动和国家产业政策扶持,目前体外诊断产业(In Vitro Diagnosis ,简写为 IVD)因其巨大的未来发展空间而受到越来越多的关注。稳定的增长速度和巨大的发展空间不断吸引资本投入该细分行业。作为IVD行业重要硬件基础的体外诊断仪器,其技术迭代升级速度也不断加快,并持续对其测试速度、精度和稳定性提出更高要求。TDK-Lambda结合其一系列低噪声、高可靠性产品和本地技术服务优势,为IVD仪器内部处于核心基础地位的供电子系统提供整体解决方案。 1、概述: 临床诊断作为现代医学中确认病因的重要手段,其主要分为体外诊断与体内诊断,目前临床上 80%以上的疾病诊断都
[医疗电子]
低频数字相位(频率)测量的CPLD实现
在电子测量技术中,测频测相是最基本的测量之一。相位测量仪是电子领域的常用仪器,当前测频测相主要是运用等精度测频、PLL锁相环测相的方法。研究发现,等精度测频法具有在整个测频范围内保持恒定的高精度的特点,但是该原理不能用于测量相位。PLL锁相环测相可以实现等精度测相,但电路调试较复杂。因此,选择直接测相法作为低频测相仪的测试方法 。 设计的低频测相仪,满足以下的技术指标:a .频率20-20KHz;b .输入阻抗≥100KΩ;c.相位测量绝对误差≤1度; d.具有频率测量和数字显示功能;e.显示相位读数为0度--359度。 1系统工作原理 图1 测频测相系统原理框图 Figure
[测试测量]
基于PROFIBUS现场总线的系统诊断技术
长久以来,PROFIBUS 技术为广大的用户提供了优良的产品和解决方案。但是随着自动化技术的进一步发展,用户对自动化系统的期望越来越高。他们不仅仅满足于使用自动化产品来构造一个自动化系统和实施一个自动化任务,他们期望着自动化的产品和技术可以在整个项目的生命周期里发挥更多的作用,产生更大的价值。 价值工程推动诊断技术的发展 从这张图表上来看,如果我们用价值工程学的方法来评估一个自动化系统的生命周期,我们可以把其分为设备安装阶段、系统调试阶段、设备投产运行阶段以及老化维修阶段。一般意义上讲,最终用户和业主只能在设备投入生产运行以后才能从自动化系统中获得收益,而用户的投资则在安装的初期为最大,随着设备采购数量的
[工业控制]
基于TDA2086相位控制器的D86型干点分析仪的设计
D86型干点分析仪是一种先进的在线连续测量油品干点的分析仪器,可连续测量从5%~97%回收点的石油产品沸点温度,温度测量范围为0~400℃,其获取的结果与GB/T6536-1997方法所得结果相关。 1 干点分析仪工作原理 干点分析仪工作原理框图如图1所示。当需要分析的油品样品以恒定的流量(25 ml/min)经过流量计、压力表、输入计量泵进入分析仪的关键部件 蒸发器组件(由闪蒸杯、加热器、热电偶测温元件和液位测量单元组成),在蒸发器内样品以一定的设定沸点温度蒸发。未蒸发的样品流入到残留液杯中收集.然后以一定的与输入成比例的量经输出计量泵排出,回流至回收装置。 残留液杯通过连通器与液位测量静力槽相通,通过控制残留液
[测试测量]
基于蓝牙技术的用于汽车远程访问诊断接口的架构
随着汽车中多媒体设备的增加,如CD/DVD播放器、数字电视等,连接这些设备的车内网包括:蓝牙、CAN、D2B、FireWire、MOST、移动媒介链路(MML)、LIN和ZigBee等等,本文介绍一种基于蓝牙技术的、用于遥控诊断接口的架构,它使测试工程师无论处在车内或车外的任何位置,都可以监控和操作汽车的传感器及控制单元完成测试任务。 未来的远程诊断系统将为汽车的动力控制器提供前所未有的访问途径,无论这辆汽车是在维修店还是在道路上。蓝牙等无线技术提供了在汽车技术人员的便携式电脑和车内网络之间进行短程无线通信所需的特性,从而使技术人员无论处在车内或车外的任何位置,都可以监控和操作汽车的传感器及控制单元。 从汽车技术人员的角度看来
[嵌入式]
怎样设置信号源/矢量信号分析仪测量 I 和 Q 增益和相位?
在使用信号源/矢量信号分析仪时,必须有两个基带信道输入。把 I 或 Q 信号连接到信道 1 上,把另一个信号连接到信道 2 上。确保信号源处于矢量模式下,或已经打开89600的 (非标量)应用程序。 在89600上,选择:Input Channels 2 channels. 设置4个网格(: Display 4 grids stack; 89600: Display Layout Stacked 4). 对轨迹A,选择Measurement Data spectrum ch1 和 Data Format log magnitude。 对轨迹B,选择Measurement Data spectrum ch2 和 D
[测试测量]
多传感器信息融合技术在车载自诊断系统的研究
随着汽车行业的发展,对汽车的性能检测、维修、管理提出更高的要求。通过分析多传感器数据融合技术故障诊断方法及汽车诊断系统(故障预测与健康管理)的特点,在不改变当前汽车智能检测系统硬件组成的情况下,将多传感器信息融合技术运用到汽车诊断系统,并且比较智能化分析系统的故障,以及记录下全部传感器和驱动器的数据,实现对汽车系统的实时状态监测、健康评估和故障诊断。 O 引言 目前的大部分故障检测方法往往只是对系统状态信息中的一种或几种信息进行多层次、多角度的分析和观察,从中提取有关系统行为的特征,所以给系统故障的有效诊断带来了局限性。比如,在汽车的运动过程中,利用发动机气缸的缸温对发动状态进行诊断时,由于信号类型中能够提供的信息较少,因
[嵌入式]
小广播
热门活动
换一批
更多
最新测试测量文章
更多精选电路图
更多热门文章
更多每日新闻
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况
更多往期活动
- Mouser 新用户大礼包再次来袭:晒单5折返E金币!
- 泰克“无忧计划”买与租的自由转换!赏漫画、填问卷 参与活动好礼送!
- MSP430 多款开发工具优惠促销,总有一款会适合你!
- 逛村田在线云展厅,了解通信、移动、工业+环境、健康四大领域的应用干货!
- 趣味电子技术史话之通信技术史——科技与人文的结合,传奇故事在这里!
- 悦读 TI 工业应用精选方案,闯关赢好礼喽!
- 参与WEBENCH设计大赛,轻松体验设计真谛!
- 再见2019,你好2020!写下你的年终总结和新年计划
- 下载《Altera SoC深度体验》,打分评论赢好礼
- LPC55S69 新一代基于ARM Cortex-M33内核 通用安全低功耗MCU
11月16日历史上的今天
厂商技术中心