通信信号研究所是铁道科学研究院(铁科院)下属的铁路通信信号技术领域具有科研、开发、生产、销售、服务整体功能的高科技企业。通号所设有行车指挥自动化、车站计算机联锁、列车运行自动控制、编组站自动化、通信、光学、雷电及干扰防护和城市轨道交通7个专业事业部。拥有防雷、光学和无线通信三个全路中心试验室、十多个专业试验室和环行铁道通信信号系统综合试验基地,主要从事雷电干扰防护和城市轨道交通安全的研究。
主要测试问题
该研究所过去购买了一台DPO3000示波器,用来查看信号的波形,利用示波器FFT功能简单查看其频谱,非常不方便,看不到更多频谱细节。如果使用频谱分析仪,又不能同时看到时域波形。
问题解决方案
使用泰克混合域示波器MDO4104-3,使用通道(CH1,RF通道)进行测试演示
测试步骤:
1、天线拾取干扰信号,使用三通接口连接CH1和RF通道
2、打开CH1和RF通道
3、将CH1设置为边沿触发
4、RF设置好频率范围和中心频率
5、把RF通道频率随时间的轨迹打开
6、把示波器设置为单次采样
中心频率500MHz,带宽1GHz,测试结果:干扰信号的时域和频域波形
中心频率125MHz,带宽250MHz,CH1带宽限制250MHz,测试结果:干扰信号的时域和频域波形
案例总结
通过测试演示,演示了MDO4104-3新的跨域分析的功能,铁科院通信信号研究所非常满意。铁科院通信信号研究所的反馈意见为:MDO4000系列示波器既是MSO示波器,又是频谱分析仪,功能强大,性价比高;赞赏MDO混合域分析仪的跨域分析功能,解决了示波器和频谱分析仪的时间同步问题。这些特点正是自己现阶段需要的测试仪器,满足自己测试需求,能大大提高工作效率。
关键字:MSO示波器 频谱分析仪 干扰信号
引用地址:
铁路干扰信号检测案例分析
推荐阅读最新更新时间:2024-03-30 22:33
泰克MSO/DPO2000B示波器系列简化和加快复杂设计
当前的工程师和技术人员正面临着日益复杂、日益关键的调试任务。新型数字设计给设计人员带来了新的问题:串行总线上的系统集成问题,瞬变,信号畸形,总线争用问题等等,当然也包括产品开发周期的竞争压力,这一切都要求必须迅速准确的完成调试工作,工程师需要花时间来查找设计中的问题,如果没有合适的调试工具,这项任务会相当耗时和棘手。 从迅速发现和捕获异常事件,到搜到波形记录找到时间及分析时间特点和设备行为,MSO/DPO2000B系列提供了一套强大的功能,加快了每个设计调试阶段的工作速度。 泰克 MSO/DPO2000B 示波器 系列支持高达200MHz的带宽、1GS/s的取样速率,以入门级价格提供了先进的调试功能。其拥有多达20条通道用
[测试测量]
频谱分析仪使用常见六大问题解答
逻辑分析仪 是利用时钟从测试设备上采集和显示数字信号的仪器,最主要的作用在于时序判定。逻辑分析仪与示波器不同,它不能显示连续的模拟量波形,而只显示高低两种电平状态(逻辑1和0)。在设置了参考电压后,逻辑分析仪将采集到的信号与电压比较器比较,高于参考电压的为逻辑1,低于参考电压的为逻辑0。这样就可以将被测信号以时间顺序显示为连续的高低电平波形,便于使用者进行分析和调试。使用逻辑分析仪,可以方便地设置信号触发条件开始采样,分析多路信号的时序,捕获信号的干扰毛刺,也可以按照规则对电平序列进行解码,完成通信协议分析。 频谱仪是一种常用的分析仪器,主要针对于射频和微波信号进行检测,在多个领域中都有一定的应用。频谱仪在使用中有一些
[测试测量]
通过采用模拟技术实现频谱分析仪的设计
有几种实现频谱分析仪的方法。我已经使用SAR ADC产品一段时间了,并且每天使用快速傅里叶变换(FFT)进行光谱分析。实现频谱分析仪的另一种常用方法称为扫频调谐接收机。该方法涉及将输入信号与本地振荡器混合,使输出通过中频滤波器,最后通过检测器。扫描本地振荡器,使得检测器的输出扫过感兴趣的频带。另一方面,使用不同的模拟技术实现了频谱分析仪。为了证明这个概念,我使用了现成的硬件。这也展示了几个非常有用的构建模块,可以将其纳入客户设计中。 我使用的技术涉及LTC1068可编程滤波器,配置为带通,扫过感兴趣的频率。 LTC1967 RMS至DC转换器将滤波后的输出转换为DC,最后,LTC2484 Delta Sigma ADC测量电压
[测试测量]
浅析频谱分析仪的相位噪声和扫描时间
●相位噪声 没有一种振荡器是绝对稳定的。虽然我们看不到频谱分析仪本振系统的实际频率抖动,但仍能观察到本振频率或相位不稳定性的明显表征,这就是相位噪声(有时也叫噪声边带)。 它们都在某种程度上受到随机噪声的频率或相位调制的影响。本振的任何不稳定性都会传递给由本振和输入信号所形成的混频分量,因此本振相位噪声的调制边带会出现在幅度远大于系统宽带底噪的那些频谱分量周围。 浅析频谱分析仪的相位噪声和扫描时间 显示的频谱分量和相位噪声之间的幅度差随本振稳定度而变化,本振越稳定,相位噪声越小。它也随分辨率带宽而变,若将分辨率带宽缩小10倍,显示相位噪声电平将减小 10 dB。 相位噪声频谱的形状与分析仪的设计,尤其是用来稳定本振的锁
[测试测量]
安捷伦E4447A便携式频谱分析仪开机自检报错故障维修案例
接收到仪器后我们工程师就着手开始检测。仪器开机后出现自检多项报错,整个频段测不到信号的现象。这样的故障现象多半应该是主板有问题了。下面就着手从仪器主板开始排查,打开仪器发现输入信号线被断开,多个板件上的接头松动。 处理维护接头松动问题后继续开机检测发现1st IF Overload报错,A20 J2信号正常,J3信号异常电平高。初步怀疑放大器或者是混频器有故障,更换放大器后无变化,接着继续换件排查更换混频器后overload报错消失,但是还有报错。这时候维修进入窘境,按道理说应该是报错都完全消失的呢,怎么还会有报错………… 偶然一个小伙伴的一句话让我有了灵感,如果放大器、混频器的故障问题都解决那么会不会是衰减器的问题呢?
[测试测量]
频谱分析仪的参数和性能指标的含义了解
射频和微波频谱分析仪甚至在原理上也是不简单的。将这两种频谱分析仪称为校正的超外差接收机仅能反映它们有什么功能及如何实现这些功能。如将它们称为频域示波器,则反映的内容就更少了。此外,如果只是走马观花地看一看这项技术,那你就会得出错误的结论:在过去十年里,射频和微波频谱分析仪没有多大变化。然而,在迅猛发展的无线技术领域,能够显示频率高达3GHz以上——常常达到7GHz,有时达到20GHz--信号的频谱分析仪事实上正在发生重大变化,其重要性也正在大大提高。 更糟糕的是,为某项任务选择最为合适的分析仪可能是个很大的难题,当你的上司不明白这一选择过程为什么不只是对一两份制造商产品说明书上的价格和一些参数进行比较而已时,尤其是这样。对于以
[测试测量]
使用FFT频谱分析仪测试音频放大器 (二)
再调整输入,直到功放只给 8 欧负载输 出1.5W,这样,更容易观察到交越失真的效果。Quad的结果如下图: 我们再把Kenwood连上,同样调整到给8欧负载输出1.5W,结果如下图: 当测试音频设备时,频率响应是另一项重要指标。一般来说,希望在20到20KHz的音频频谱间有一个 平坦 的响应,最低-3dB。我们用示波器频谱峰值检测模式,并且从DC开始增加信号发生频率直到40KHz.我们选择40KHz,是因为许多发烧友对超过人听力范围的频响感兴趣。 两个功放的频响很相似,我们只选择Kenwood的频响显示如下:
[测试测量]
无线频谱分析仪的选择(图)
无线设备在工作时可能会出现周期性地挂起,干扰其他消费电子产品的工作(例如电台),或者无法完全发挥应有的功能,这些问题都会使消费者对它的技术水平和相应的产品供应商丧失信心。为了避免这种糟糕的情况,选择一种能够满足当今无线产品设计与调试需求的高性能频谱分析仪是至关重要的,这种频谱分析仪不仅要能够检验产品的真实性能,也要能够检测高度集成的无线发射器的功能。 无线技术的挑战 在过去几年中,用户所接触的产品功能越来越强大,其目的在于在移动电话这种单一设备中集成多种方便实用的技术,从而增强用户的多功能体验。新的高速数据技术,例如HSDPA/HSUPA和A版本的1xEV-DO,能够为用户提供更强大的功能,例如广播视频和高速E-m
[测试测量]