示波器在物联网中的应用

发布者:Joyful222Life最新更新时间:2013-01-25 来源: 21IC 关键字:示波器  在物联网  混合域示波器 手机看文章 扫描二维码
随时随地手机看文章

随着现代传感器技术和无线通信技术的发展,物联网已经开始进入人们的日常生活。以RFID、ZigBee技术和NFC近场通信等技术为代表的物联网应用,正在成为众多企业、高校研发和创新的方向。其中一个最重要的因素是如何测量系统中时间相关的时域和频域信号。

物联网行业的发展趋势与设计挑战随着现代传感器技术和无线通信技术的发展,物联网已经开始进入人们的日常生活。以RFID、ZigBee技术和NFC近场通信等技术为代表的物联网应用,正在成为众多企业、高校研发和创新的方向。虽然针对这些技术,半导体厂商提供了各种专用芯片,甚至是集成度很高的解决方案,但在设计一个实际的物联网设备时,工程师仍然面临着很多挑战。其中一个最重要的因素是如何测量系统中时间相关的时域和频域信号。RFID和ZigBee技术中应用到的RF信号虽然不是十分复杂,但信号的质量、功率和时序关系决定着系统能否正常工作。而这些RF参数本身不仅和射频发射/接收电路有关,还受到基带电路和控制电路的影响。内部寄存器的读写、电源的工况甚至是系统延迟时间的大小,都会决定整个系统的工作状态。传统的示波器或频谱分析仪是无法完成这种时间相关的时域和频域信号综合调试工作的。

MDO混合域示波器的创新设计理念泰克MDO4000系列混合域示波器独特的创新理念,为调试跨域的时频相关的系统提供了独一无二的工具。MDO4000在一台全功能的混合信号示波器的基础上,增加了一台3GHz或6GHz的频谱分析仪,可以完成普通频谱分析仪的各种频域测量功能。完全独立的示波器时域采集系统和频谱分析仪频域采集系统,既可以独立工作,也可以通过触发协同工作。通过移动频谱时间,用户可以在示波器采集到的时间窗口内,观测在射频通道采集到的任何一点的RF信号的频谱情况。MDO还提供了RF信号的幅度、频率和相位相对于时间变化的调制域分析功能。这些独有的功能帮助用户测量RF信号的各种调制信息。使用频谱分析仪的工程师经常面临的一个问题是如何准确地触发并捕获到关心的RF信号。由于传统的频谱分析仪触发功能很有限,用户很难做到这一点。MDO4000不但可以通过RF信号的各种特征进行触发,还可以使用示波器的触发系统,通过基带或控制信号完成RF信号的触发采集,这种功能极大地降低了调制物联网设备的难度。

 

图1.MDO4000结构框图

图1.MDO4000结构框图

 

图2.通过IQ解调后的数据,MDO4000可以计算得到RF信号的调制域波形

图2.通过IQ解调后的数据,MDO4000可以计算得到RF信号的调制域波形

在调试RFID系统时,工程师面临的一个重要的困难是如何测量标签的返回信号。由于标签返回信号的幅度很小,使用普通的示波器往往难以捕获这一信号,更不要说对其幅度和频率做进一步分析了。主要原因是普通示波器的动态范围只有4 0 d B,无法捕获微弱的标签信号。MDO4000具有60dB的动态范围,以及低至-152dB/Hz的底噪,能够很好地胜任同时捕获读写器信号和标签信号的任务。其独特的AvsT射频信号幅度的时域波形功能,甚至可以显示标签信号幅度变化过程。下面我们以一个13.56MHz的RFID读写器系统为例,介绍MDO4000的跨域调试应用。(关于MDO4000在ZigBee系统中的应用,另有专门文章介绍)。

在RIFD系统研发中MDO混合域示波器的应用

图3. MDO4000RFID读写器测试环境,图中有专用天线工装

图3. MDO4000RFID读写器测试环境,图中有专用天线工装

图4.采用NXPCLRC632芯片的RFID读写器

图4.采用NXP CLRC632芯片的RFID读写器

测试13.56MHzRFID读写器的RF信号质量参数

13.56MHz高频RFID系统是目前国内应用最为广泛,技术较为成熟的射频识别系统。相关的国际标准对射频发射频率、信道带宽、发射功率等参数都有明确的要求,特别是RF信号的幅度(功率)随时间变化的情况,标准有着严格的规定。以读写设备为例,读写设备发出的载波信号的幅度变化时间,必须符合ISO18000-3标准对于t1-t4的时间限制。

图5. ISO18000-3 13.56MHz RFID空中接口时间参数规范a

图5. ISO18000-3 13.56MHz RFID空中接口时间参数规范a

 

通过使用MDO4000独特的触发功能,用户可以轻松稳定捕获RFID的时域和频域信号。如图所示,由于载波信号幅度在变化,使用传统手段很难测量出RF信号从90%下降到5%的T1的时间长度。我们可以打开AvsT调制曲线,它代表了RF信号的幅度相对于时间变化的轨迹。通过自动测量或手动光标测量,我们可以轻松得到T1的准确时间。同理可以完成其他时间参数的测试。

图6. 13.56MHzRFID PCD到PICC信号的时域和AvsT调制域波形

图6. 13.56MHzRFID PCD到PICC信号的时域和AvsT调制域波形

图7.测量13.56MHz RFID PCD到PICC t4时间

图7.测量13.56MHz RFID PCD到PICC t4时间[page]

识别噪声来源

我们测量以868 MHz为中心的射频频谱,其拥有相当低的2 kbps的FSK调制数据速率,以供参考。图3显示了参考频谱。注意MDO4000系列同时显示时域视图和频域视图,所有信号都时间相关。画面的下半部分显示了RF信号的频域视图,在本例中是射频发射机输出,画面的上半部分是时域的传统示波器视图。频域视图中显示的频谱来自时域视图中短橙色条指明的时间周期,称为频谱时间(Spectrum Time)。由于时域画面的水平量程独立于处理时域画面傅立叶变换(FFT)要求的时间数量,表示与RF采集相关的实际时间周期非常重要。MDO4000系列示波器的独特结构可以以时间相关的方式分开采集所有输入(数字信号、模拟信号和RF信号)。每个输入有单独的存储器,视时域画面的水平采集时间,存储器中采集的RF信号支持频谱时间,并可以在模拟时间内部移动,如图4所示。

图8.测量PCD发射信号与标签返回信号间的延迟时间

图8.测量PCD发射信号与标签返回信号间的延迟时间

图9. 13.56MHz RFID射频信号的时域波形、调制域波形与频谱显示

图9. 13.56MHz RFID射频信号的时域波形、调制域波形与频谱显示

另一个需要严格保证的时间是从读写器发出读卡信号后到标签返回信号的时间。过长或过短的时间都会被认作读写失败。使用传统仪器测量这些信号的难度很大。MDO4000可以将RF信号的AvsT的轨迹完整展示的屏幕中,用户只需用光标定位到相应位置,即可得到这一延迟时间。


使用ASK调制方式的RFID系统是通过副载波传输数据信息的。在上图的频谱部分,我们可以清楚地看到射频信号的载波是13.56MHz,副载波信号为±800KHz左右。符合相关规定的要求。如果需要测量射频信号的射频参数,如信道功率、邻道功率比或占用带宽等,通过选择MDO4000的自动测量功能,可以在屏幕中直接显示这些测量结果。

图10.发射频点误差测量

图10.发射频点误差测量

图11.信道功率测量

图11.信道功率测量

图12.占用带宽测量

图12.占用带宽测量

如果设计人员希望了解RFID系统传输的数据情况,MDO4000同样可以提供强有力的支持。MDO4000可以提供RF信号的IQ数据。将这些数据导入泰克的RSAVu软件后,可以完成RFID数据的解码、射频指标计算等工作。如下图所示,使用RSAVu软件读取MDO4000提供的。TIQ数据,软件可以计算得出RF信号的幅度时域波形,计算得出EVM、调制深度、调制系数、频率偏差、码速率等参数。并可以将这些RF信号代表的数据解码显示出来。简化了设计人员的调试难度。

图13. RSAVu自动测试和解码功能

图13. RSAVu自动测试和解码功能

MDO的系统级调试和分析功能

图14. RFID读写器功能框图

图14. RFID读写器功能框图

RFID读写器是一个包含了基带微控制器、RF发射和接收模块以及电源和控制总线的复杂的射频嵌入式系统。基带控制信号和系统内部寄存器的状态直接影响系统的工作状态。以我们测试的读写器为例,NXP CLRC632读写控制芯片包含了压控振荡器、锁相电路、编码、解码、混频和发射/接收功能,芯片的工作受到单片机芯片STC90c58RD+的控制。

测试系统控制信号与TX和RX信号的时序关系

 图15. Rx信号与射频信号的时域关系

图15. Rx信号与射频信号的时域关系

关键字:示波器  在物联网  混合域示波器 引用地址:示波器在物联网中的应用

上一篇:万用示波表在变频器分析测量中的作用
下一篇:任意波形发生器简介

推荐阅读最新更新时间:2024-03-30 22:34

示波器实操特辑之7:一键缩放
  在示波器的使用中,经常需要将波形全局和局部的兴趣波形组合起来进行观看,这就要用到大家非常熟悉的Zoom功能了,ZDS2022示波器的Zoom功能有哪些颇有意思的小细节呢?   首先,我们将ZDS2022示波器的波形缩放功能直接放在了操作面板上,作为可以一键操作的快捷按键。当使用Zoom功能的时候,无需寻找,无需进入子菜单,您只需按下操作面板上的Zoom按键,就能完成一键缩放,用起来真的很爽!   除此之外,ZDS2022示波器上还可以实现自定义存储区域,如果您需要对当前屏幕上的某一段波形进行保存的时候,您只需打开一键缩放(ZOOM),调整副时基,使副时基窗口显示出您感兴趣的区域,然后根据需要设置保存格式,就可以完成自定义区
[测试测量]
<font color='red'>示波器</font>实操特辑之7:一键缩放
利用数字示波器测试开关电源的方法
  电源测试数字示波器开关电源   从传统的模拟型电源到高效的开关电源,电源的种类和大小千差万别。它们都要面对复杂、动态的工作环境。设备负载和需求可能在瞬间发生很大变化。即使是“日用的”开关电源,也要能够承受远远超过其平均工作电平的瞬间峰值。设计电源或系统中要使用电源的工程师需要了解在静态条件以及最差条件下电源的工作情况。   过去,要描述电源的行为特征,就意味着要使用数字万用表测量静态电流和电压,并用计算器或PC进行艰苦的计算。今天,大多数工程师转而将示波器作为他们的首选电源测量平台。现代示波器可以配备集成的电源测量和分析软件,简化了设置,并使得动态测量更为容易。用户可以定制关键参数、自动计算,并能在数秒钟内看到结果,而不只是原
[电源管理]
示波器探头如何实现最佳匹配?
1.探头分类 探头通常按测量对象进行分类,分类如图1所示。其中,高阻无源探头、高压差分探头和 电流探头 是我们最为熟悉的,接下来做一个简要的介绍。 图1 探头分类 1.11.1 高阻无源探头 从实际需求来说,带补偿的高阻无源电压探头使用比例最大,可以满足大多数的低速数字信号、电源和其它的一些典型的示波器使用。 此类探头具备较高的输入电阻(一般1M 以上),可调的补偿电容,当首次接上示波器时,一般需要以调节棒调整电容值,以匹配示波器输入电容,消除低频或高频增益。图2的左边为欠补偿波形,中间为正常波形,右边为过补偿波形.
[测试测量]
<font color='red'>示波器</font>探头如何实现最佳匹配?
示波器发展给协议解码带来的便捷
示波器从模拟示波器发展到数字示波器,带来了许多大的改变,例如信号采集、带宽、采样率、屏显等。同样,这样的改变也体现在“协议解码”上,新的解码方式将人们从“0”,“1”的世界中解放出来,大大提高了工作效率。 下面,我们具体看一下示波器发展中协议解码方式的变化。 最初的协议解码 最初的示波器只是一个简单的波形显示兼数据测量,而我们需要获取协议波形深层次的含义,则需要一段一段去分析。 例如:观察IIC协议,一个时钟信号,一个数据信号,我们需要按照时钟与数据信号一位一位对应,去进行0/1的组合转换,将其“翻译”成我们需要形式,再去对应相应的物理量。这样不仅工作量大、效率低,,而且还容易出错。 图1 现在的协议解码 直接将波形数
[测试测量]
<font color='red'>示波器</font>发展给协议解码带来的便捷
隔离通道手持式示波器进行浮置测量方案
当基准信号处于浮置状态,而不是以地电势为基准时,对功率元器件、功率半导体元件及其他电子应用进行精确和安全的测量是非常困难的。在这些情况下,不是所有的示波器都适于查看波形。在没有合适的仪器和探头的情况下执行浮置测量,将会为测试人员带来安全隐患。不适宜的测量仪器可能生成错误的测量结果,并对电路和示波器造成损害。本应用指南阐述了什么是浮置测量及其危险性,以及使用隔离通道手持式示波器执行功率电子应用测量的原因。 什么是浮置测量? 浮置测量是指两个测量点中的任何一个都不处于地电势的测量。例如,假设您要测量线性电源串联稳压器的输入和输出端的压降。那么稳压器的电压输入引脚和电压输出引脚都不能接地。 浮置测量的危险 在多数应用中,尤其是开
[测试测量]
隔离通道手持式<font color='red'>示波器</font>进行浮置测量方案
泰克和FS2为泰克MSO4000混合信号示波器推出FPGAView软件
该解决方案加快了Xilinx和Altera FPGA设计调试速度 俄勒冈州毕佛顿, 2007年8月28日讯 – 全球领先的测试、测量和监测仪器的提供商--泰克公司(NYSE: TEK)日前宣布,它已经与MIPS科技公司(NASDAQ:MIPS)下属分公司First Silicon Solutions (FS2)合作推出FPGAView软件,以使用泰克近日推出的MSO4000系列混合信号示波器配置和实时调试Altera和Xilinx FPGA器件。 泰克新推出的MSO4000系列混合信号示波器在嵌入式设计和调试使用的一个小型轻便的便携式设备中,同时融合了三种强大的功能,即先进的实时示波器、逻辑分析仪和突破性的Wave Insp
[新品]
示波器不同取样方式的选择
在测试测量中示波器有许多种取样方法,今天日图课堂将为大家介绍示波器不同取样方式的选择。 默认模式 保留每个采集间隔中的第一个取样点。 峰值检测模式 使用了两个连续捕获间隔中包含的所有取样的最高和最低点。该模式仅可用于实时、非内插的取样,并且在捕获高频率的毛刺方面非常有用。 高分辨率模式 计算每个采集间隔所有取样值的平均值。该模式也只能用于实时、非内插取样。高分辨率模式提供了较高分辨率、较低带宽的波形。 包络模式 在所有采集中查找最高和最低记录点。包络模式对每个单独的采集使用峰值检测。 平均模式 计算用户指定的采集数的每个记录点的平均值。平均模式对每个单独的采集都使用取样模式。使用平均模式可以减少随机噪声
[测试测量]
<font color='red'>示波器</font>不同取样方式的选择
ZDS2022示波器百集实操视频之98:存储深度应用实例
大家好,在致远电子示波器微信用户交流群中,我看到这样一些信息,有位用户的一个项目中需要用到多结点高速串行通信总线,使用CPLD作为收发控制器,总线设计速度为5Mbps,由于码率较高,所以他想测试下该总线信号的稳定性。手头刚好有一台ZDS2022示波器,因为之前已经了解到ZDS2022示波器存储深度高达112Mpts,所以想用它来试一试。为了测试信号的稳定性,特意把一帧数据调得很大,5Mbps,传输3秒钟。将时基设置为500ms,想把所有波形都记录下来慢慢分析。 他将存储深度设为自动后,在同一信号源下、不同时基下对采集的波形放大观察,结果发现波形不一样,这是怎么回事呢? 采样率与奈奎斯特采样原理 事实上,该问题的实质是涉及到
[测试测量]
ZDS2022<font color='red'>示波器</font>百集实操视频之98:存储深度应用实例
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved