随着现代传感器技术和无线通信技术的发展,物联网已经开始进入人们的日常生活。以RFID、ZigBee技术和NFC近场通信等技术为代表的物联网应用,正在成为众多企业、高校研发和创新的方向。其中一个最重要的因素是如何测量系统中时间相关的时域和频域信号。
物联网行业的发展趋势与设计挑战随着现代传感器技术和无线通信技术的发展,物联网已经开始进入人们的日常生活。以RFID、ZigBee技术和NFC近场通信等技术为代表的物联网应用,正在成为众多企业、高校研发和创新的方向。虽然针对这些技术,半导体厂商提供了各种专用芯片,甚至是集成度很高的解决方案,但在设计一个实际的物联网设备时,工程师仍然面临着很多挑战。其中一个最重要的因素是如何测量系统中时间相关的时域和频域信号。RFID和ZigBee技术中应用到的RF信号虽然不是十分复杂,但信号的质量、功率和时序关系决定着系统能否正常工作。而这些RF参数本身不仅和射频发射/接收电路有关,还受到基带电路和控制电路的影响。内部寄存器的读写、电源的工况甚至是系统延迟时间的大小,都会决定整个系统的工作状态。传统的示波器或频谱分析仪是无法完成这种时间相关的时域和频域信号综合调试工作的。
MDO混合域示波器的创新设计理念泰克MDO4000系列混合域示波器独特的创新理念,为调试跨域的时频相关的系统提供了独一无二的工具。MDO4000在一台全功能的混合信号示波器的基础上,增加了一台3GHz或6GHz的频谱分析仪,可以完成普通频谱分析仪的各种频域测量功能。完全独立的示波器时域采集系统和频谱分析仪频域采集系统,既可以独立工作,也可以通过触发协同工作。通过移动频谱时间,用户可以在示波器采集到的时间窗口内,观测在射频通道采集到的任何一点的RF信号的频谱情况。MDO还提供了RF信号的幅度、频率和相位相对于时间变化的调制域分析功能。这些独有的功能帮助用户测量RF信号的各种调制信息。使用频谱分析仪的工程师经常面临的一个问题是如何准确地触发并捕获到关心的RF信号。由于传统的频谱分析仪触发功能很有限,用户很难做到这一点。MDO4000不但可以通过RF信号的各种特征进行触发,还可以使用示波器的触发系统,通过基带或控制信号完成RF信号的触发采集,这种功能极大地降低了调制物联网设备的难度。
图1.MDO4000结构框图
图2.通过IQ解调后的数据,MDO4000可以计算得到RF信号的调制域波形
在调试RFID系统时,工程师面临的一个重要的困难是如何测量标签的返回信号。由于标签返回信号的幅度很小,使用普通的示波器往往难以捕获这一信号,更不要说对其幅度和频率做进一步分析了。主要原因是普通示波器的动态范围只有4 0 d B,无法捕获微弱的标签信号。MDO4000具有60dB的动态范围,以及低至-152dB/Hz的底噪,能够很好地胜任同时捕获读写器信号和标签信号的任务。其独特的AvsT射频信号幅度的时域波形功能,甚至可以显示标签信号幅度变化过程。下面我们以一个13.56MHz的RFID读写器系统为例,介绍MDO4000的跨域调试应用。(关于MDO4000在ZigBee系统中的应用,另有专门文章介绍)。
在RIFD系统研发中MDO混合域示波器的应用
图3. MDO4000RFID读写器测试环境,图中有专用天线工装
图4.采用NXP CLRC632芯片的RFID读写器
测试13.56MHzRFID读写器的RF信号质量参数
13.56MHz高频RFID系统是目前国内应用最为广泛,技术较为成熟的射频识别系统。相关的国际标准对射频发射频率、信道带宽、发射功率等参数都有明确的要求,特别是RF信号的幅度(功率)随时间变化的情况,标准有着严格的规定。以读写设备为例,读写设备发出的载波信号的幅度变化时间,必须符合ISO18000-3标准对于t1-t4的时间限制。
图5. ISO18000-3 13.56MHz RFID空中接口时间参数规范a
通过使用MDO4000独特的触发功能,用户可以轻松稳定捕获RFID的时域和频域信号。如图所示,由于载波信号幅度在变化,使用传统手段很难测量出RF信号从90%下降到5%的T1的时间长度。我们可以打开AvsT调制曲线,它代表了RF信号的幅度相对于时间变化的轨迹。通过自动测量或手动光标测量,我们可以轻松得到T1的准确时间。同理可以完成其他时间参数的测试。
图6. 13.56MHzRFID PCD到PICC信号的时域和AvsT调制域波形
图7.测量13.56MHz RFID PCD到PICC t4时间[page]