某型船用传动齿轮箱振动模态的试验与分析

发布者:TechWhizKid最新更新时间:2013-02-07 来源: 21IC 关键字:齿轮箱  振动  噪声  模态试验 手机看文章 扫描二维码
随时随地手机看文章
舰船齿轮箱不仅要求传递功率大、体积小、重量轻,还要求其振动小、噪声低[1 ] ,齿轮箱能否正常工作会影响整个系统的工作特性,齿轮箱本身的振动以及由轴系传来的齿轮的振动都是产生舰船辐射噪声的主要根源,继而直接影响舰船的战斗力。某型舰船的多输入双级传动齿轮箱存在着较大的振动和噪声,表现为振动量级超大和有啸叫声,这一现象在其它同型齿轮箱中少见,通过对该型舰船齿轮箱箱体的模态对比测试,测试结果发现了某型舰船齿轮箱产生噪声振动的故障原因,并采取了相应的措施,排除了故障。

1 齿轮箱的振动信号分析

从故障齿轮箱中录取信号,经数字信号分析,从中提取故障信息,是机器设备状态监测和故障诊断的有效方法[2 ,3 ] 。振动信号的结构成分反映齿轮箱的振动特征及故障性质。为此,通过对同型的两座齿轮箱的振动信号的拾取及分析对比,查找齿轮箱的主要故障源及其传递途径。

在齿轮箱上共布置了六个测点,测点布置在齿轮箱体罩壳轴承测温计的凸台上,测点如图1 所示。

newmaker.com 
图1 齿轮箱测点布置

同时,还用声级计测试空气噪声,并分析其频谱,比较其与箱体振动的相关性。主要测试仪器有: Kistler 8702250 加速度传感器、Kistler 5124A 放大器、TEAC TD2135 T 数据记录仪、HP25670 动态信号分析仪和QUEST MODEL 1800 声级计。从齿轮箱的振动频谱图分析,其振动频谱的主频率为二级齿轮副的啮合频率及其倍频。而空气噪声频谱的主频率与振动频谱的主频率一致,也是二级齿轮副的啮合频率。由此可以断定齿轮箱的异常齿轮箱的异常噪声来源于齿轮机组的异常振动。从故障齿轮箱的加速度振动幅值(见图2) 和正常齿轮箱的加速度振动幅值(见图3) 比较来看,故障齿轮箱上的23 # 轴承处振动强烈和噪声较大,该轴承为齿轮箱的主监控测点。齿轮箱振动的原因可能是在齿轮啮合传动中,当齿轮、轴承存在集中缺陷、分布缺陷或齿轮所在轴弯曲时,将产生转频调制啮合频率的现象。如果轴严重弯曲或者齿轮或轴承严重故障而导致振动能量异常大时,齿轮啮合传动中的异常振动会激励起传动箱体的固有频率。另外,齿轮箱体本身的振动以及由轴系传来的齿轮的振动都是产生辐射噪声的主要根源,有必要对齿轮箱进行模态试验与分析。

newmaker.com
图2 故障齿轮箱振动加速度

newmaker.com
图3 正常齿轮箱振动加速度[page]

2 模态试验的理论模型

由于振动监测分析法具有诊断速度快、准确率高和能够实现在线诊断等特点,所以它是对齿轮箱进行故障诊断最有效、最常用的方法之一。其中应用模态试验分析方法是进行故障诊断和状态监测的一种重要途径。通常当结构发生故障时, 如出现裂纹、松动、零部件损坏等情况, 结构物理参数将发生变化,其特征参数(固有频率、模态阻尼、振型、频响函数等) 随之发生改变。根据这些参数的变化情况,可以判断出故障的类型,有时还可以判断出故障的位置。齿轮箱零件失效的统计表明,齿轮和轴承失效的比重最大,分别为60 %和19 %[4 ] 。对齿轮箱进行模态分析并利用模态参数等结果进行故障判别,已日益成为一种有效的故障诊断和安全检测方法。

齿轮箱体的振动可假设为一个具有n 个自由度的线性时不变系统运动,其振动微分方程为[5 ] :

newmaker.com

式中:M, C, K分别为系统的质量、阻尼及刚度矩阵; X, F 分别为系统各点的位移响应向量及激振力向量。

对式(1) 两边进行拉氏变换,对线性时不变系统,其极点在复平面左半平面,上述过程将完全是傅氏变换过程,得到的传递函数为频响函数,即

X (ω) = H(ω) F(ω) (2)

对于单输入,当在p 点激振, l 点测量响应,位移频响函数为:

newmaker.com

从理论上讲,频响函数矩阵的任一行或任一列都包含了系统模态参数的全部信息,所差的只是一个常数因子。因此,为了识别模态,只要测量频响函数矩阵的一行或一列即可。实际测试中,由功率谱密度来求系统的频率响应函数具有更普遍的实用意义,表达式为:

H(ω) = Gf x (ω) / Gf f (ω) (4)

式中: Gf x (ω) 为输入输出互功率谱密度; Gf f (ω) 为输入输出自功率谱密度。

上式采用了互谱分析技术,当多次平均后,可极大地减小噪声。由于估计频响函数时用的是最小二乘近似法,因而可以定义相应的相干函数,它是最小二乘误差的量度,其定义为:

newmaker.com

式中: Gxx 为响应的自谱。

相干函数γ2 表示频域中响应与力之间线性相关的程度(或相关系数) ,它在0~1 之间变化,相干函数越接近于1 ,表明两个相比较信号(例如输入与输出) 之间经全部平均后存在着良好的线性关系。求出系统的单位脉冲响应函数后采用单模态拟合法,即对应于单输入多输出( SIMO) 的最小二乘复指数法(L SCE) 估算模态参数。它的基本思路是:先构造一个多项式,导出该系统的自回归(AR) 模型,在求解出自回归系数以后,逐步识别系统的模态参数。

3 齿轮箱体模态测试

3. 1 测试仪器和分析设备

冲击力锤选用Kistler 9724A5000 , 配重250 g , 尼龙锤头,B &K8200 型压电式力传感器及B &K2635 型电荷放大器;响应测试:选用三轴向B &K4321 加速度传感器,B &K2635 型电荷放大器;记录、分析仪:比利时PIMEN TO8 通道动态信号采集及分析系统或美国DP104 动态信号采集及分析系统和比利时LMS 公司CADA2X 结构模态测试分析软件。

3. 2 测点布置及测试方案

为了对齿轮箱的模态进行测试,首先对齿轮箱进行结构分析和几何尺寸测绘,并对其进行初步有限元计算和固有频率分布范围估计。预估结果表明,由上下两箱体组成的齿轮箱的上箱体各阶模态较为密集,所以在上箱体布置了216 个响应测点,下箱体上布置了48 个响应测点,共计264 个响应测点。布点原则是保证可以激发出齿轮箱体的各阶模态,对于轴承座等重要部位以及能够引发噪声比较大的部位采取多布响应测点的原则,在箱体上标出各测点位置,并逐一对其进行编号。

根据主传动齿轮箱由上下两箱体组成的特点和实际操作条件,测试采用锤击法,固定敲击点移动响应点的测试方法。试验时,力信号及由加速度传感器获得的响应信号经放大器分别进入数据采集器或便携机并用分析仪现场监视每次敲击时各测点的频响函数及相干情况。要求力锤敲击时,冲击力的自功率谱在所选频带内应当干净而平坦,没有连击,用力大小均匀且测试对象响应适中,每点平均锤击次数为八次,信号大小满足信噪比。选择敲击点要避开节点、接近区域几何中心等因素。为了避免因响应点选择不当可能造成模态泄漏,响应点应选择在非对称轴线(或对称平面上) ,并经多次初步反复测试后确定。该齿轮箱采用减振橡胶器弹性隔振方式,测试中采用原装支承方式。试验结束后,将记录的信号送给模态分析软件进行模态分析。测试分析系统框图如图4 所示。

newmaker.com
图4 模态测试及分析系统[page]

3. 3 数据处理

模态分析采用实模态分析法。根据固有频率的密集程度,选择适当带宽,进行初始估计,然后进行整体曲线拟合,求出频响函数,并对模态振型进行综合化处理, 剔除局部模态,得出测试箱体的各阶模态参数。由于振型矢量是相对值,要采用不同尺度的振型矢量归一化,并且得到不同的广义模态参数。本试验按模态质量为1 归一化处理,获得了如表1 中前15 阶模态的模态参数。

newmaker.com

4 齿轮箱模态分析与结论

分析各阶振型,齿轮箱上箱体的振动远比下箱体的振动大,这与有限元计算的结果是一致的。轴承座位于上箱体,所以上箱体的大幅度振动使得轴承座的振动也比较大,这就使得齿轮在运转过程中的对中受到影响,进而产生齿面的敲击带来振动与噪声,这是齿轮箱产生振动与噪声的一个重要根源。

结合齿轮箱运转实际情况,可以得到齿轮箱在若干工况下齿轮箱中高压端和低压端齿轮啮合的频率。由表1 知故障齿轮箱9 阶模态频率为543. 5 Hz ,正常齿轮箱9 阶模态频率为537. 2 Hz ,而其高压端二级齿轮啮合工作频率在主轴转速为105 r/ min 时约为561 Hz ,虽然工作频率561 Hz 没有落在这两个模态频率上,但对一般的工程结构,要求各阶模态频率远离工作频率,或工作频率不落在某阶模态的半功率带宽内(计算表明,故障齿轮箱和正常齿轮箱的半功率带宽为527. 59~559. 49 Hz 和522. 5~551. 9 Hz) ,比较起来,故障齿轮箱的9 阶模态频率比正常齿轮箱的模态频率更接近于工作频率。另外从故障箱和正常箱的9 阶模态频率相邻的两个模态频率8 阶(分别对应为458. 6 Hz、470. 1 Hz) 和10阶(分别对应为607. 2 、608. 9 Hz) 的来分析,这两阶(8 、10) 的模态频率,故障箱的更接近于工作激励频率,这是造成故障箱在主轴转速为105 r/ min 时,振动和噪声大的原因之一。由图2 知,故障齿轮箱的振动和噪声最大处在齿轮箱高压端二级减速齿轮23 # 轴承支承处,符合模态测试结果。

当输出转速为150 r/ min 时,其高压端二级齿轮啮合频率为810~840 Hz 之间,随输入转速波动而变化。而此时,故障和正常齿轮箱13 阶模态频率分别为845. 1 Hz 和812. 9 Hz ,进一步计算故障和正常齿轮箱13 阶模态频率的半功率带宽分别为:828. 2~861. 9 Hz 和790. 6~835. 2 Hz ,都处于工作频率的附近,必然使得这里的振动加速度幅值较大。由图2 知故障齿轮箱其23 # 轴承的振动加速度幅值(RMS) 在输出转速150 r/ min 时,为39. 1 m/ s2 ,是同一工况正常齿轮箱(支承高压端二级齿轮的23 #轴承的加速度幅值15. 1 m/ s2 (RMS) 的2. 6 倍。而此时,正常齿轮箱除了23 # 轴承(在转速上升时,该处振动最大值处,其余都比较小) 、24 # 轴承的振动比较大以外(分别为15. 1 m/ s2 和13. 6 m/ s2 ) ,其余的振动加速度幅值比较小。

从上面的讨论中可以发现,故障齿轮箱振动和噪声比同一工况下正常齿轮箱偏大,对比表1 故障齿轮箱和正常齿轮箱的模态频率及阻尼比,可以有以下分析结论:

(1) 二级齿轮啮合频率与齿轮箱9 阶和13 阶模态频率重合而引起的共振造成齿轮箱振动和噪声大。同时,发现故障齿轮箱振动和噪声远比正常齿轮箱的大,是由故障齿轮箱二级齿轮激振力的远远大于正常齿轮箱的激振力产生的。其可能的成因:故障箱基座下沉量比正常箱的大(后经检测事实如此) ;

铆焊结构的齿轮箱随时间发生变形,造成转子的不平衡、安装不对中、轴的平行度超差,轴承损坏、齿轮表面损坏等因素;

(2) 两个齿轮箱模态阻尼比的大小有较大的变化。系统阻尼越大,对振动的衰减也就越大。故障箱阻尼比最大值为5. 38 % ,最小值为0. 94 % ,而正常箱的阻尼比值的范围为5. 38 %~1. 86 %。在同一阶数下,正常箱的模态阻尼比至少比故障箱的模态阻尼比大或相当,这也是正常箱的振动和噪声比故障箱小的原因之一。造成阻尼比变化的原因众多,比如滑动轴承的间隙、滑油粘度、安装螺栓的拧紧力矩的变化等。

5 结束语

根据分析结论,经拆检,发现输入端与齿轮箱的对中、齿轮箱与联轴器的对中等以及基座下沉量在允许的范围内,但发现23 # 滑动轴承的轴瓦有磨损现象并且在二级小齿轮表面有损伤现象,通过对二级传动齿轮进行修复和动平衡,并更换磨损的轴瓦,故障齿轮箱的振动和噪声大幅减小。以上结果表明,模态分析方法是一种对齿轮箱的性能评估、故障诊断、保养和维修十分有用的工具[6 ] 。

参考文献:
[1 ] 陈国钧,曾凡明. 现代舰船轮机工程[M] . 长沙:国防科技大学出版社,2001.
[2 ] 金咸定. 船舶结构力学的进展与信息化[J ] . 振动与冲击,2002 ,21 (4) :1 - 6.
[3 ] 曹树谦,张文德,萧龙翔. 振动结构模态分析—理论、实验与应用[M] . 天津:天津大学出版社,2002.
[4 ] 丁康,朱小勇,陈亚华. 齿轮箱典型故障振动特征与诊断策略[J ] . 振动与冲击,) :7 - 12
[5 ] 傅志方,华宏星. 模态分析理论与应用[M] . 上海:上海交通大学出版社,2000.
[6 ] 程广利,朱石坚,黄映云,等. 齿轮箱振动测试与分析[J ] . 海军工程大学学报,  (6) :83 - 88.
关键字:齿轮箱  振动  噪声  模态试验 引用地址:某型船用传动齿轮箱振动模态的试验与分析

上一篇:LMS-Signature Testing在某型发动机转子叶片动频、动应力测量中的应用
下一篇:浅谈企业能源监测管理系统解决方案

推荐阅读最新更新时间:2024-03-30 22:34

噪声CMOS运算放大器发布
运算放大器(简称“运放”)是具有很高放大倍数的 电路 单元。在实际电路中,通常结合反馈网络共同组成某种功能模块。它是一种带有特殊耦合电路及反馈的放大器。其输出信号可以是输入信号加、减或微分、积分等数学运算的结果。 由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”。运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在 半导体芯片 当中。随着 半导体技术 的发展,大部分的运放是以单芯片的形式存在。运放的种类繁多,广泛应用于电子行业当中。 全球知名半导体制造商ROHM(总部位于日本京都)面向处理微小信号的光传感器、声纳及硬盘中使用的加速度传感器等需要高精度感测的工业设备应用,开发出业界顶级的低噪
[嵌入式]
低<font color='red'>噪声</font>CMOS运算放大器发布
ADC噪声性能测试和调试配置
你评估过一个ADC的噪声性能,并且发现测得的性能不同于器件数据表中所给出的额定性能吗?在高精度数据采集系统中实现高分辨率需要对模数转换器 (ADC) 噪声有一定的认识和了解。有必要了解数据表如何指定噪声性能,以及外部噪声源对总体系统性能的影响方式。其中的一个噪声源示例就是我的同事Ryan Andrews在他的博文,“小心!你的ADC的性能也许只和它的电源性能差不多。”中所谈到过的电源噪声。在这篇博文中,我将会看一看基准噪声如何影响增量-累加ADC中的DC噪声性能。 如图1所示,你可以用短接至中电源电压的正负输入来指定和测量一个ADC的DC噪声性能。通过测量这个条件下的噪声,ADC输出代码内的噪声几乎不受基准电压、基准噪声或输入信号
[测试测量]
36V超低噪声精准运算放大器在0.1Hz至10Hz频率范围噪声为30nVP-P
2016年8月17日,凌力尔特公司 (Linear Technology Corporation) 推出精准运算放大器 LT6018,该器件在 0.1Hz 至 10Hz 频率范围内噪声为 30nVP-P,最大输入失调电压为 50 V。LT6018 专门对低频噪声敏感的应用而设计,具非常低且不到 1Hz 的 1/f 拐角频率。低输入失调电压使该器件在整个温度和输入共模范围内保持 0.5 V/ C 最大 TCVOS 值和 124dB 最小 CMRR 值。开环增益典型值为 142dB,从而使该器件能够实现低于 1ppm 的非线性度。 LT6018 提供 15MHz 增益带宽积,运用转换增强电路实现高达 30V/ s 的转换率。该器件吸
[模拟电子]
36V超低<font color='red'>噪声</font>精准运算放大器在0.1Hz至10Hz频率范围<font color='red'>噪声</font>为30nVP-P
18位、线性、低噪声、精密双极性±10 V直流电压源
  电路功能与优势   图1所示电路提供18位可编程电压,其输出范围为−10 V至+10 V ,同时积分非线性为±0.5 LSB、微分非线性为±0.5 LSB,并且具有低噪声特性。     该电路的数字输入采用串行输入,并与标准SPI、QSPI、MICROWIRE®和DSP接口标准兼容。对于高精度应用,通过结合使用AD5781、ADR445 和 AD8676 等精密器件,该电路可以提供高精度和低噪声性能。     基准电压缓冲对于设计至关重要,因为DAC基准输入的输入阻抗与码高度相关,如果DAC基准电压源未经充分缓冲,将导致线性误差。AD8676开环增益高达120 dB,经过验证和测试,符合本电路应用关于建立时间、失调电压和低阻抗
[电源管理]
18位、线性、低<font color='red'>噪声</font>、精密双极性±10 V直流电压源
汽车内部噪声智能控制系统的设计
噪声主动控制基本思想是由德国物理学家Paul Lueg于1936年发明“电子消声器”时首次提出的。噪声主动控制技术相对传统的被动控制,具有对中、低频段噪声控制效果明显、系统轻巧、实时性强等优点,具有潜在的工程应用价值。 噪声控制为实时控制,需要较大的计算量,普通的单片机难以实现。20世纪80年代,数字信号处理(DSP)芯片的问世为信号的实时控制开辟了广阔的发展空间。随着芯片技术的不断成熟和发展,DSP已成为现代智能控制器的核心部件。 本文采用DSP芯片TMS320F2812设计了既可以脱机独立自主运行又可以通过USB接口在线仿真的智能控制器,并以该控制器为核心设计了汽车内部噪声主动智能控制系统。 智能控制系统的电路设
[应用]
采用SMBus温度传感器IC实现风扇开关控制
在很多产品中,低或中速运行的风扇已足以散热,同时允许保留最高速模式以应付最糟糕的情形。本文阐述的电路使用线性电压控制,并通过以低于厂商满额定电压的直流电压来运行风扇达到降低风扇速度从而降低噪声的目的。 SMBus温度传感器IC 市场上可以买到的SMBus温度传感器IC包括测量IC周围环境温度的传感器以及支持一个或多个外部传感器(即一些廉价的、与二极管相连的三极管)的器件。 SMBu通信接口为系统微控制器提供简便的连接,而通过可写寄存器可对温度传感器的测量参数进行配置。 图1:本文控制电路设定的温度和风扇速度的关系。 许多SMBus温度传感器具有一个或两个输出,当温度超过的某一极限值(已编程到IC寄存
[应用]
低频噪声测量交钥匙解决方案
是德科技 先进低频噪声分析仪 A-LFNA可以帮助您非常容易地进行半导体器件的低频噪声测量。E4727B低频噪声分析仪系统包含硬件部分和软件部分。使用者只需要输入测试条件即可进行低频噪声的测量,软件会自动判定硬件所需要的最佳设置。硬件部分里最重要和最关键的部分是LNA (低噪声放大器),一个非常低噪声和高增益表现的LNA是必须的。E4727B里的LNA可以覆盖各种类型器件以及各种测试条件。一些商用的低频噪声测量系统同时集成了电压低噪声放大器 (Voltage-LNA) 和电流低噪声放大器 (Current-LNA) 来进行进行不同条件下低频噪声的测量。这篇应用指南是来解释为什么在低频噪声分析仪E4727B里只需要有电压低噪声放大器
[测试测量]
低频<font color='red'>噪声</font>测量交钥匙解决方案
一种新型的相位噪声测试仪
用于无线传输的收发模块的性能主要决定于所用本振的相位噪声。因此模块特性的准确测量,特别是相位噪声的测量,是进行有效通信和广播的基本保证,在雷达系统等特殊的高科技领域应用中也是如此。在普通的相位噪声测量应用中,一台频谱分析仪通常可以满足测试要求。但是,如果需要更大的动态范围、更高的测量精度以及更多的灵活性时,基于锁相环(PLL)的测量方法测量相位噪声更加适合。R&S(罗德与施瓦茨公司)的信号源分析仪FSUP便在一台仪表上集合了这两种功能:它既提供给用户一台频率可高达50GHz的顶级频谱分析仪(R&S FSUP),同时具备了基于锁相环测量方法的相位噪声测量功能。 图1 R&S FSUP将频谱仪和基于锁相环测试方法的相噪测试仪集于一体
[测试测量]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved