容性设备绝缘监测数据采集系统硬件电路设计

发布者:skyhcg最新更新时间:2013-04-17 来源: 电子设计工程 关键字:容性设备  绝缘监测  数据采集系统 手机看文章 扫描二维码
随时随地手机看文章
0 引言
    容性设备是指绝缘结构采用电容屏的电气设备,主要包括耦合电容器(OY)、套管、电流互感器(CT)以及电容式电压互感器(CVT)等。在变电站中,高压容性设备是其重要的组成部分。这些高压容性设备绝缘性能的好坏,对于整个变电站的运行安全至关重要。现有的技术手段是通过测量介质损耗tan δ及电容量Cx,可较为灵敏地发现电容型设备的绝缘缺陷。目前所有的在线监测系统均把介损作为重点测量的对象。
    为了提高系统监测的精度,本系统采用基于相对本地测量单元的数字介损测量技术。放弃传统的过零比较技术,利用TMS320F2812具有较强的数字运算能力,通过DFT算法,精确的提高系统介损测量的准确度。

1 数据采集系统设计方案
   
在以往的系统设计中,通常采用母线的电压作为基准进行测试,但是这种测试方式经常会受到现场环境和传输过程的干扰影响。为了减小干扰,可以采用系统的供电电源为基准源。这样不但可以减小干扰提高精度,操作起来也十分的方便。系统测量的方案如图1所示,在该系统中,假设流过系统的阻性电流为Ix,而系统的容性电流为In。同时,设基准源流过参考电阻Rs的电流为Is。利用高精度电流传感器把被测电流信号Ix,In变换为电压信号Ux,Un。电流传感器在±12 V直流电源的供电下可以将100μA~700 mA的电流信号转换成电信号输出。电压信号的峰值为0~10 V。然后由数字化测量系统对信号进行同步采样及傅里叶变换处理,获得这两个信号的基波向量及其相位夹角phUx-phUn。如果不考虑电压互感器(PT)的相位失真问题,则可方便地计算出电容型设备Cx的介质损耗tan δ值。

a.JPG


    电容型设备的介损测量通常需要选用母线电压作为相位测量的基准。传统的处理方式是把母线PT的二次侧电压信号直接提供给检测系统,其主要缺点是现场布线复杂,模拟信号在长距离的传送过程中易受电磁场干扰的影响,有可能导致介损测量结果失真。本方案所设计的绝缘监测系统采用信号处理单元的220 VAC电源作为参考基准,不用将PT二次信号进行远距离传输。该方法较好地解决了基准电压信号的取样问题,也是目前比较通用的解决方式。
    由图1可知,该系统主要由两个数据采集单元组成。每个采集单元都包含了信号调理和A/D采样两个部分。

2 硬件电路设计
   
对于设备阻性电流和容性电流的获得是通过有源零磁通传感器来实现的。该电流传感器相对于传统的无源电流传感器来讲能够大大提高对微电流信号测量的准确度。其电流精度可以达到微安数量级。如此高的精度对于复杂环境中的容性设备来讲,信号调理电路的设计和软件滤波器的设计尤为重要。
2.1 放大电路
   
本系统放大电路采用动态增益的办法实现。其具体电路如图2所示,CH1 A,CH1 B,CH1 C接CPLD,由CPLD进行控制。即如图3中的风通过数字控制的方式来实现。主控芯片CPLD选用EPM3128ATC100-10,该芯片是一款高性能、低功耗、基于E2PROM的可编程逻辑器件,片内集成了2 500个可用门,8个逻辑阵列模块(LAB),每个LAB由16个宏单元组成,最多为用户提供80个I/O口,通过JTAG接口进行在线编程,可以进行100次的程序烧写。选用该芯片主要基于以下几点考虑:Altera器件采用铜铝布线的先进CMOS技术,功耗低、速度快,采用互连结构,提供快速、连续的信号延时和具有相同延时的时钟总线结构。逻辑集成度高,开发周期短,使用专用软件设计输入、处理、校验及器件编程一共仅需几个小时。FPGA/CPLD中寄存器资源或组合逻辑资源比较丰富,更适合于时序电路和组合逻辑电路的设计。

b.JPG


    为了防止信号的振荡,电路中增加电容C3,对其进行消除振荡影响。[page]

2.2 滤波电路
   
为了提高信号采集的数据精度和稳定性,在数据采集之前要对信号实现硬件滤波。硬件滤波采用以OPA2277为核心的二阶巴特沃斯低通滤波器。
    由于该系统使用环境的特殊性,系统极易受到白噪声信号以及高频噪声的影响,所以有必要对信号进行前级处理。根据以往试验现场数据分析可知,高频信号的影响尤为突出。该系统采用了硬件滤波的方法得到理想信号。在得到传感器的输出信号之后,设计了频带宽度为20 Hz,中心频率为50 Hz的二阶带通滤波器。其电路连接结构如图4所示。该滤波电路是利用理想运算放大器的开环增益较高和深度负反馈的原理设计实现的。电路的连接方式为通用方式,电路中C4,C5为供电电源滤波电容,采用并联方式。R2,C5,R3,C4组成通用的二阶滤波电路,R4,R5用来放大信号和平衡系统。

c.JPG


2.3 A/D转换器数据采集电路
   
本系统采用多通道高速度高精度A/D转换器ADS8365,是一种高速、低功耗、6-channel模拟器,16位A/D转换器。包含6个4μs逐次逼近ADC,6个差分sample-and-hold放大器,内部2.5 V基准源。通道有一个HOLD信号(HOLDA,HOLDB,HOLDC)允许对每个通道的同步取样。并且可以实现对信号的双极性采集。
    数据采集的准确性和系统的基准源息息相关,本系统采用电阻分压的形式得到2.5 V基准源电压。再通过电容滤波,可以得到比较纯净的电压信号。为了提高系统的抗干扰能力和负载能力,用高精度运算放大器OPA2350组成电压跟随器和有源滤波电路,REFIN和REFOUT分别和A/D转换器的62,61引脚相接。具体电路连接如图5,图6所示。

d.JPG

[page]

    本系统中,ADS8365对于正弦波的采集,涉及到正负两个半周期的信号。所以需要涉及双极性信号的调理,调整采集信号的极性。在A/D转换器采用了差分输入电路。差分输入电路具有较高抗干扰能力、EMI抑制能力和动态范围高的特点。具体的电路设计如图7所示,R4X和R5X具有比例放大作用。C1X,C2X并联在电源两端起到滤波作用,电容滤除供电电源对系统杂波干扰。信号由Vinx进入和Ref相加之后输出,最终进入后端A/D转换器的信号为(V+-V_)。在该电路中,对于理想运算放大器而言利用其虚短特性,可以对R1X,R2X,R3X实现运算。在本电路中的Vref就是图5中产生的参考电压。

e.JPG


    在信号进入A/D转换器之后,信号进入DSP信号处理电路。DSP处理器通过对信号进行数字滤波和分析计算之后,通过串口发送数据和显示数据。

3 最后结果
   
为了验证系统的稳定性,采用VC++编写上位机软件,用来实时采集下位机的数据。软件界面和数据如图8所示。设备类型包含在下拉列表中共7种类型(CT,CVT,MOA,OY(OC),PT,TB,TR),此选项根据当前要测试的设备的类型进行选择。该显示页面为PT单元的测试数据。

f.JPG


    在该数据测试系统中,校准相位点的电流大小为20 mA。在基波大小为100 mA,A,B,C三相的谐波分别设定在30 mA,20 mA,10 mA,10 mA的情况下测定,其电流幅值误差在±5%范围内。在此情况下,相位角的偏差在0.3%之内,满足系统设计要求。

4 结论
   
系统采集的主要参数为介损,该参数经常受到很多条件的影响。比如高频信号、环境因素、仪器性能等等。需要说明的是如果遇到整体偏差的需修改系数,比如PT单元的相位偏差允许在±15’范围内。但是总体来说,该采集系统在各个采集单元的误差还是可以达到测量精度的要求的。

关键字:容性设备  绝缘监测  数据采集系统 引用地址:容性设备绝缘监测数据采集系统硬件电路设计

上一篇:电磁阀实现“透明式”自动快速检测
下一篇:铝合金车轮动态弯曲疲劳寿命预测

推荐阅读最新更新时间:2024-03-30 22:36

基于CAN总线和DSP的双层数据采集系统的设计
  引言   CAN(Controller Area Network)即控制器区域网,CAN总线是由德国BOSCH公司为实现汽车测量和执行部件之间的数据通讯而设计的、支持分布式控制及实时控制的串行通讯网络。CAN BUS现场总线已由ISO/TC22 技术委员会批准为国际标准IOS11898(通讯速率小于1Mbps)和ISO11519(通讯速率小于125kbps)。CAN总线开始主要应用于自动化电子领域的汽车发动机部件、传感器、抗滑系统等应用中,但随着CAN的应用普及,CAN总线的实时性以及抗干扰能力强等优点也逐步为航天领域所认可。   本文将对CAN总线在航天领域应用情况进行介绍,并在CAN总线和DSP技术研究的基础上,设计了基
[嵌入式]
一种基于ADSP-2188M的多传感器数据采集系统
摘 要: 在移动智能体的研制中,能够实时地探测周围环境信息的传感器系统是至关重要的。本文介绍了一种以 DSP-ADSP-2188M 为核心的传感器数据采集系统的软、硬件设计和工作原理,以及与上位机通信的设计和实现过程。该系统可以应用于移动机器人、智能轮椅、自动制导车辆等移动智能系统中。 引言 在自主移动机器人系统、智能轮椅、自动制导车辆等智能移动系统中,需要实时地采集未知和不确定环境中的信息,以完成避障、环境地图绘制、导航、定位等运作,然后进行路径规划等任务。这些任务必须依靠能实时感知环境信息的传感器系统来完成。为了在复杂环境中获取有效的信息,这些系统往往安装有
[模拟电子]
一种基于ADSP-2188M的多传感器<font color='red'>数据采集系统</font>
基于单片机的高精度智能交直流电压数据采集系统设计
电压是电子与电力系统中最基本的测量元素之一,快速准确地获取电压值一直是数据采集与电子测量仪器研究的重要内容之一。传统的指针式电压表具有精度低、可视距离近、功能单一等缺陷,已不适应高速信息化的发展需要。目前市场上广泛使用的数字电压表智能化程度低,测量电压时需手动切换量程,当量程选择不当时会出现测量精度下降、乃至烧坏电压表的极端情况; 而高精度的全量程无档数字电压表一般都采用了DSP、FPGA或CPLD等复杂电路系统, 硬件和软件实现成本较高。为此,笔者设计研制出了一种以单片机为控制主体的智能交流直流电压数据采集系统,具有体积小、精度高、结构简单、使用与读数方便、性价比高、适应范围宽等优点,有效地弥补了上述各种电压表系统的缺点和弊端。
[电源管理]
基于单片机的高精度智能交直流电压<font color='red'>数据采集系统</font>设计
基于TMS320VC5410和TLVl571的数据采集系统
    在应用DSP进行数字信号处理时,通常都要用采样电路对模拟信号进行采样,然后进行A/D转换器转换成数字信号再进行数据处理。这里给出一种由TLVl571与TMS320VC5410组成的信号采集系统。 1 TLVl571简介     在DSP的外围电路中,A/D转换器比较重要。基于不同的应用,可选择不同性能指标和价位的芯片。一般的A/D转换器的选择主要考虑:转换精度、转换时间、转换器的价格。     这里选择了TI公司专门为DSP配套的一种10位的并行A/D转换器TLVl571,该器件给定的CLK频率达到的等效最大采样频率为(1/16)fCLK。 1.1 TLVl571的内部结构及引脚定义     TLVl57l的内部结构及引脚功
[测试测量]
基于TMS320VC5410和TLVl571的<font color='red'>数据采集系统</font>
基于PCI-9812的太赫兹成像数据采集系统设计
太赫兹波(THz)指频率在0.1~10 THz(1 THz=1012Hz)范围内的电磁波,波长范围在30μm~3 mm,这一波段位于微波和红外辐射之间,因此太赫兹波兼有波与光的特性,在物体成像、时域谱分析、医学诊断、环境监测、空间遥感和军事安全等方面都展现出巨大的应用前景。太赫兹波的光子能量仅4.1 meV,没有X射线的电离特性,不会对材料和人体造成伤害,因此太赫兹成像技术比X射线有更大的应用优势。20世纪90年代以后,由于自由电子激光器和超快技术的发展,为THz脉冲的产生提供了稳定可靠的激发光源,世界各国都在各个领域展开了对太赫兹波技术的研究。近些年,我国的科研工作者也开展了对太赫兹波技术的大量研究工作,目前的太赫兹成像技术
[模拟电子]
基于PCI-9812的太赫兹成像<font color='red'>数据采集系统</font>设计
基于ADC0809和51单片机的多路数据采集系统设计
“数据采集”是指将温度、压力、流量、位移等模拟物理量采集并转换成数字量后,再由计算机进行存储、处理、显示和打印的过程,相应的系统称为数据采集系统。 本文的主要任务是对0~5V的直流电压进行测量并送到远端的PC机上进行显示。由于采集的是直流信号,对于缓慢变化的信号不必加采样保持电路,因此选用市面上比较常见的逐次逼近型ADC0809芯片,该芯片转换速度快,价格低廉,可以直接将直流电压转换为计算机可以处理的数字量。同时选用低功耗的LCD显示器件来满足其在终端显示采集结果的需求。终端键盘控制采用尽可能少的键来实现控制功能,为了防止键盘不用时的误操作,设计时还设置了锁键功能,在键盘的输入消抖方面,则采用软件消抖方法来降低硬件开销,提高
[单片机]
基于ADC0809和51单片机的多路<font color='red'>数据采集系统</font>设计
基于Windows98平台开发DMA高速数据采集系统
    摘要: 介绍基于Windows98平台的DMA虚拟设备驱动程序的开发,并给出了一个简单的DMA虚拟设备驱动程序的开发实例。     关键词: 直接存储器存取(DMA)方式 虚拟设备驱动程序(VxD)VtoolsD 直接存储器存取方式不仅具有高速度、高效率的特点,而且CPU资源占用少,因此在需要高速、批量交换数据的场合得到了广泛的应用。在DOS下编写DMA控制程序并不难,但要编制出精美实用的界面则是一件非常繁锁的工作,而且效果往往不佳。Windows自问世以来便以身采取的保护措施使得Windows与硬件直接接口时需要程序员编写专用的虚拟设备驱动程序。针对DMA的Windows虚拟设备驱动程序并不常见,因
[嵌入式]
基于PDIUSBD12的USB数据采集系统的设计
1引 言 随着计算机微处理器芯片性能的高速发展,计算机逐渐在各种领域中广泛使用,但随之而来的问题是计算机本身软硬件资源的严重不足。为节省计算机的软硬件资源,USB接口应运而生。 USB在诞生之初便面对许多已趋成熟 的计算机接口的挑战,这既要求它有对于其他接口的明显优势,并不断完善,才可能被广大用户接受。表1 是USB和其他常见总线在几个参数上的比较。 表1 USB及其他常用总线的比较 USB的优势特点: (1)速度快。高速模式速率为12Mbps,低速模式速率也可达到1.5Mbps。USB2.0理论上传输率可以达到480Mbps。 (2)安装配置容易。USB设备支持即插即用,支持热拔插。系统对其进行自动配置,不占
[单片机]
基于PDIUSBD12的USB<font color='red'>数据采集系统</font>的设计
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved