超声波流量计的基本原理及类型

发布者:BoldDreamer最新更新时间:2013-09-09 来源: 21ic关键字:超声波流量计  信号检测  换能器 手机看文章 扫描二维码
随时随地手机看文章
超声波在流动的流体中传播时就载上流体流速的信息。因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。起声波流量计是近十几年来随着集成电路技术迅速发展才开始应用的一种非接触式仪表,适于测量不易接触和观察的流体以及大管径流量。它与水位计联动可进行敞开水流的流量测量。使用超声波流量比不用在流体中安装测量元件故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可不影响生产管线运行因而是一种理想的节能型流量计。

众所周知,目前的工业流量测量普遍存在着大管径、大流量测量困难的问题,这是因为一般流量计随着测量管径的增大会带来制造和运输上的困难,造价提高、能损加大、安装不仅这些缺点,超声波流量计均可避免。因为各类超声波流量计均可管外安装、非接触测流,仪表造价基本上与被测管道口径大小无关,而其它类型的流量计随着口径增加,造价大幅度增加,故口径越大超声波流量计比相同功能其它类型流量计的功能价格比越优越。被认为是较好的大管径流量测量仪表,多普勒法超声波流量计可测双相介质的流量,故可用于下水道及排污水等脏污流的测量。在发电厂中,用便携式超声波流量计测量水轮机进水量、汽轮机循环水量等大管径流量,比过去的皮脱管流速计方便得多。超声被流量汁也可用于气体测量。管径的适用范围从2cm到5m,从几米宽的明渠、暗渠到500m宽的河流都可适用。

另外,超声测量仪表的流量测量准确度几乎不受被测流体温度、压力、粘度、密度等参数的影响,又可制成非接触及便携式测量仪表,故可解决其它类型仪表所难以测量的强腐蚀性、非导电性、放射性及易燃易爆介质的流量测量问题。另外,鉴于非接触测量特点,再配以合理的电子线路,一台仪表可适应多种管径测量和多种流量范围测量。超声波流量计的适应能力也是其它仪表不可比拟的。超声波流量计具有上述一些优点因此它越来越受到重视并且向产品系列化、通用化发展,现已制成不同声道的标准型、高温型、防爆型、湿式型仪表以适应不同介质,不同场合和不同管道条件的流量测量。

超声波流量计目前所存在的缺点主要是可测流体的温度范围受超声波换能铝及换能器与管道之间的耦合材料耐温程度的限制,以及高温下被测流体传声速度的原始数据不全。目前我国只能用于测量200℃以下的流体。另外,超声波流量计的测量线路比一般流量计复杂。这是因为,一般工业计量中液体的流速常常是每秒几米,而声波在液体中的传播速度约为1500m/s左右,被测流体流速(流量)变化带给声速的变化量最大也是10-3数量级.若要求测量流速的准确度为1%,则对声速的测量准确度需为10-5~10-6数量级,因此必须有完善的测量线路才能实现,这也正是超声波流量计只有在集成电路技术迅速发展的前题下才能得到实际应用的原因。

超声波流量计由超声波换能器、电子线路及流量显示和累积系统三部分组成。超声波发射换能器将电能转换为超声波能量,并将其发射到被测流体中,接收器接收到的超声波信号,经电子线路放大并转换为代表流量的电信号供给显示和积算仪表进行显示和积算。这样就实现了流量的检测和显示。

超声波流量计常用压电换能器。它利用压电材料的压电效应,采用适出的发射电路把电能加到发射换能器的压电元件上,使其产生超声波振劝。超声波以某一角度射入流体中传播,然后由接收换能器接收,并经压电元件变为电能,以便检测。发射换能器利用压电元件的逆压电效应,而接收换能器则是利用压电效应。

超声波流量计换能器的压电元件常做成圆形薄片,沿厚度振动。薄片直径超过厚度的10倍,以保证振动的方向性。压电元件材料多采用锆钛酸铅。为固定压电元件,使超声波以合适的角度射入到流体中,需把元件故人声楔中,构成换能器整体(又称探头)。声楔的材料不仅要求强度高、耐老化,而且要求超声波经声楔后能量损失小即透射系数接近1。常用的声楔材料是有机玻璃,因为它透明,可以观察到声楔中压电元件的组装情况。另外,某些橡胶、塑料及胶木也可作声楔材料。 [page]

超声波流量计的电子线路包括发射、接收、信号处理和显示电路。测得的瞬时流量和累积流量值用数字量或模拟量显示。

根据对信号检测的原理,目前超声波流量计大致可分传播速度差法(包括:直接时差法、时差法、相位差法、频差法)波束偏移法、多普勒法、相关法、空间滤波法及噪声法等类型,如图所示。其中以噪声法原理及结构最简单,便于测量和携带,价格便宜但准确度较低,适于在流量测量准确度要求不高的场合使用。由于直接时差法、时差法、频差法和相位差法的基本原理都是通过测量超声波脉冲顺流和逆流传报时速度之差来反映流体的流速的,故又统称为传播速度差法。其中频差法和时差法克服了声速随流体温度变化带来的误差,准确度较高,所以被广泛采用。按照换能器的配置方法不同,传播速度差拨又分为:Z法(透过法)、V法(反射法)、X法(交叉法)等。波束偏移法是利用超声波束在流体中的传播方向随流体流速变化而产生偏移来反映流体流速的,低流速时,灵敏度很低适用性不大.多普勒法是利用声学多普勒原理,通过测量不均匀流体中散射体散射的超声波多普勒频移来确定流体流量的,适用于含悬浮颗粒、气泡等流体流量测量。相关法是利用相关技术测量流量,原理上,此法的测量准确度与流体中的声速无关,因而与流体温度,浓度等无关,因而测量准确度高,适用范围广。但相关器价格贵,线路比较复杂。在微处理机普及应用后,这个缺点可以克服。噪声法(听音法)是利用管道内流体流动时产生的噪声与流体的流速有关的原理,通过检测噪声表示流速或流量值。其方法简单,设备价格便宜,但准确度低。

以上几种方法各有特点,应根据被测流体性质.流速分布情况、管路安装地点以及对测量准确度的要求等因素进行选择。一般说来由于工业生产中工质的温度常不能保持恒定,故多采用频差法及时差法。只有在管径很大时才采用直接时差法。对换能器安装方法的选择原则一般是:当流体沿管轴平行流动时,选用Z法;当流动方向与管铀不平行或管路安装地点使换能器安装间隔受到限制时,采用V法或X法。当流场分布不均匀而表前直管段又较短时,也可采用多声道(例如双声道或四声道)来克服流速扰动带来的流量测量误差。多普勒法适于测量两相流,可避免常规仪表由悬浮粒或气泡造成的堵塞、磨损、附着而不能运行的弊病,因而得以迅速发展。随着工业的发展及节能工作的开展,煤油混合(COM)、煤水泥合(CWM)燃料的输送和应用以及燃料油加水助燃等节能方法的发展,都为多普勒超声波流量计应用开辟广阔前景。(end)
关键字:超声波流量计  信号检测  换能器 引用地址:超声波流量计的基本原理及类型

上一篇:危险气体监测系统设计及特性
下一篇:椭圆齿轮流量计

推荐阅读最新更新时间:2024-03-30 22:39

确定选用外夹式超声波流量计的6点判断标准
由于具有安装携带方便,调试简便简行,测量效果精准,维护量小的多方面的优点,在管道流体的测量中,越来越多的用户开始选用外夹式超声波流量计,淮安润中仪表科技有限公司的RZ-1158C型 外夹式超声波流量计 就是其中一款,RZ-1158C型外夹式超声波流量计作为一种新型流量测量仪表,因其无需破管、无需停工、安装方便等优势赢得广大用户和施工单位的喜爱,不过我们提醒朋友们注意的是外夹式超声波流量计也并非完美无缺,并不能适用任何工况现场,只有满足了外夹式超声波流量计安装与使用的要求,才能够在测量中取得符合我们要求的测量数据,广大用户如何确定自己是否适合选用该产品呢?本文总结了6个要求,供各位参考: 1. 根据介质特点判断,目前RZ-11
[测试测量]
确定选用外夹式<font color='red'>超声波</font><font color='red'>流量计</font>的6点判断标准
信号检测理论在通信信号检测中的应用
信号检测理论是在噪声环境下,根据有限的观测数据,来判断信号有无的理论。信号检测通常是基于某种最优准则,对观测数据的概率统计特性进行分析,最终作出判决的过程。下面首先讨论信号检测涉及的基本概念,然后给出信号检测理论在通信信号检测中的应用 1 信号检测基础 1.1 信号检测数学模型 信号检测通常可以建模为一个双择检测问题,即 对于信号检测,总是希望尽可能准确的检测到信号,而信号检测的关键就是检测统计量的构造。检测统计量的构造通常依据某种最优准则。常用最优准则主要包括贝叶斯准则、最大后验概率准则、极大极小化准则、最小错误概率准则和纽曼-皮尔逊准则。 相比与其他三种准则,最小错误概率准则和纽曼-皮尔逊准则在通信信号处理的检测中最为常
[测试测量]
<font color='red'>信号检测</font>理论在通信<font color='red'>信号检测</font>中的应用
超声波流量计的工作原理
声波按性质分为电磁波和机械波两大类。电磁波是由于电磁力的作用而产生的,是电磁场变化在空间的传播过程。电磁波按频率可分为无线电波、红外线、可见光、紫外光、X射线等。机械波是由于机械力产生的机械波动在介质中的传播,它传播的是机械能,仅能在介质中传播。声波是一种机械波,按频率分为次声波、可闻声波、超声波。频率低于20Hz的波是次声波;频率在20~20000Hz的波成为可闻声波;频率在20kHz以上的波称之为超声波。 超声波是频率在20kHz以上的机械振动波,它的指向性好,能量集中,穿透本领大,能穿透几米厚的钢板,能量消耗不大,在遇到两种介质的分界面时,能产生明显的反射和折射现象。 超声波在传播的过程中是有一定的衰退现象,这是因
[测试测量]
<font color='red'>超声波</font><font color='red'>流量计</font>的工作原理
对射式小口径超声波流量计的原理及设计
内容说明 本发明属于管道传输流体流量计量技术领域,具体涉及对射式小口径超声波流量计。 发明背景 超声波流量计和传统的机械式流量仪表、电磁式流量仪表相比具有计量精度高、量程比更大,更能适应被测流体温度、压力、密度等参数的变化,对管径及其管道水平、垂直走向的适应性强,使用方便,易于数字化管理等优点。目前,超声波流量计已经广泛的应用到市政供热、水务、工业、矿山、发电厂等流量测量领域,技术日益成熟。 然而,对于小口径管道,由于其管道直径本身较小,对于标准给定的管段长度,换能器设置在如此小的管径的通道中是个技术难题,制约着超声波流量计在小口径管道流量计量的应用,例如,生活用水领域等。 发明内容 针对现有技术中小口径超声波流量计存
[测试测量]
对射式小口径<font color='red'>超声波</font><font color='red'>流量计</font>的原理及设计
基于单片机的医学信号检测仪的设计应用
1 引 言 传统的检测仪器大多由硬件电路来完成,不仅功能单一,而且开发周期长,不易维护。随着微电子技术和信息技术的高速发展,医学检测仪器正向组合式、多功能、智能化和微型化方向发展。 现代数字部件的快速发展为医学检测仪提供了强有力的支持,医学检测仪器都无一例外地采用了微处理器来增强其功能。广泛地应用微处理器芯片能增强仪器的智能化程度,提高其稳定性和数据处理的精确性,使医学信号的采集、处理、通信一体化,并具有自诊断、自校验等一系列优点。 ATMEL公司新推出的AT90系列AVR单片机是很引人注目的一款微处理器。这种芯片基于新的RISC(Reduced Instruction Set Computer)结构,在设计上采用了流水线的
[单片机]
基于单片机的医学<font color='red'>信号检测</font>仪的设计应用
MSK信号检测识别的FPGA实现
     采用MSK 调制的跳频通信具有主瓣能量集中、旁瓣衰落滚降快、频谱利用率高和抗干扰能力强等优点,在军事通信中应用广泛。如美军现役的联合战术信息分发系统采用的通信信号,工作带宽969~1 206 MHz,跳频速率为70000 多跳/ s, 单个频点驻留时间约为13 s,信号持续时间* s, 总共有51个间隔为3 MHz 的信道,码速率为5 MHz。已知在该工作频段内主要还存在单频、窄带调幅和线性调频等信号。为了准确截获并识别目标信号,针对此信号环境设计了一种MSK 信号检测识别方法,并使用FPGA进行了设计实现。   1 算法设计     1.1 宽带跳频信号实时检测算法   用现代技术来实现宽带数字化接收的一个
[工业控制]
16位A/D转换器CS5521在双色红外信号检测中的应用
    摘 要: 针对红外信号传感器输出信号较弱且变化范围大的特点,介绍了一种基于16位A/D 转换器CS5521的可编程红外信号检测电路的设计方法。     关键词: CS5521A/D转换器 可编程增益放大器 红外信号检测     双色红外探测是一种高抗干扰的热源探测。由于热源温度高低、传播距离远近以及传播媒介等的不同,红外性能亦不同,所以红外传感器输出信号较弱且变化范围大(0.1μA~1mA)。因此,要求信号检测电路具有低噪声、低零漂、高抗噪及大范围增益可调等性能。这类电路一般由电流—电压转换模块、可编程增益放大模块和A/D转换模块组成。若将各部分用不同芯片来设计,电路不仅功耗大
[应用]
信号检测及处理电路图
下图是由红热释电红外传感器、光敏电阻、BISS0001组成的信号检测及处理电路。红热释电红外传感器只对波长为10μm(人体辐射红外线波长)左右的红外辐射敏感,所以除人体以外的其他物体不会引发探头动作。探头内包含两个互相串联或并联的热释电元,而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,于是输出检测信号。 BISS0001是由运算放大器、电压比较器、状态控制器、延迟时间定时器以及封锁时间定时器等构成的数模混合专用集成电路。当外
[模拟电子]
<font color='red'>信号检测</font>及处理电路图
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved