详解原子吸收光谱分析如何选择最佳实验条件

发布者:CyborgDreamer最新更新时间:2013-12-11 来源: ofweek关键字:光谱分析  灵敏度  干扰因素 手机看文章 扫描二维码
随时随地手机看文章

  原子吸收光谱分析中影响测量条件的可变因素多,在测量同种样品的各种测量条件不同时,对测定结果的准确度和灵敏度影响很大。选择最适的工作条件,能有效地消除干扰因素,可得到最好的测量结果和灵敏度。

  1、吸收波长(分析线)的选择:通常选用共振吸收线为分析线,测量高含量元素时,可选用灵敏度较低的非共振线为分析线。如测Zn时常选用最灵敏的213.9nm波长,但当Zn的含量高时,为保证工作曲线的线性范围,可改用次灵敏线307.5nm波长进行测量。As,Se等共振吸收线位于200nm以下的远紫外区,火焰组分对其明显吸收,故用火焰原子吸收法测定这些元素时,不宜选用共振吸收线为分析线。测Hg时由于共振线184.9nm会被空气强烈吸收,只能改用此灵敏线253.7nm测定。

  2、光路准直在分析之前,必须调整空心阴极灯光的发射与检测器的接受位置为最佳状态,保证提供最大的测量能量。

  3、狭缝宽度的选择狭缝宽度影响光谱通带宽度与检测器接受的能量。调节不同的狭缝宽度,测定吸光度随狭缝宽度而变化,当有其它谱线或非吸收光进入光谱通带时,吸光度将立即减少。不引起吸光度减少的最大狭缝宽度,即为应选取得适合狭缝宽度。对于谱线简单的元素,如碱金属、碱土金属可采用较宽的狭缝以减少灯电流和光电倍增管高压来提高信噪比,增加稳定性。对谱线复杂的元素如铁、钴、镍等,需选择较小的狭缝,防止非吸收线进入检测器,来提高灵敏度,改善标准曲线的线性关系。

  4、燃烧器的高度及与光轴的角度锐线光源的光束通过火焰的不同部位时对测定的灵敏度和稳定性有一定影响,为保证测定的灵敏度高应使光源发出的锐线光通过火焰中基态原子密度最大的“中间薄层区”。这个区的火焰比较稳定,干扰也少,约位于燃烧器狭缝口上方20mm-30mm附近。通过实验来选择适当的燃烧器高度,方法是用一固定浓度的溶液喷雾,再缓缓上下移动燃烧器直到吸光度达最大值,此时的位置即为最佳燃烧器高度。此外燃烧器也可以转动,当其缝口与光轴一致时(0)由最高灵敏度。当欲测试样浓度高时,可转动燃烧器至适当角度以减少吸收的长度来降低灵敏度。

  5、空心阴极灯工作条件的选择a、预热时间:灯点燃后,由于阴极受热蒸发产生原子蒸汽,其辐射的锐线光经过灯内原子蒸汽再由石英窗射出。使用时为使发射的共振线稳定,必须对灯进行预热,以使灯内原子蒸汽层的分布及蒸汽厚度恒定,这样会使灯内原子蒸汽产生的自吸收和发射的共振线的强度稳定。通常对于单光束仪器,灯预热时间应在30分钟以上,才能达到辐射的锐性光稳定。对双光束仪器,由于参比光束和测量光束的强度同时变化,其比值恒定,能使基线很快稳定。空心阴极灯使用前,若在施加1/3工作电流的情况下预热0.5-1.0h,并定期活化,可增加使用寿命。

  b、工作电流:元素灯本身质量好坏直接影响测量的灵敏度,及标准曲线的线性。有的灯背景过大而不能正常使用。灯在使用过程中会在灯管中释放出微量氢气,而氢气发射的光是连续光谱,称之为灯的背景发射。当关闭光闸调零,然后打开光闸,改变波长,使之离开发射的波长,在没有发射线的地方,如仍有读数这就是背景连续光谱。背景读数不应大于5%,较好的灯,此值应小于1%。所以选择灯电流前应检查一下灯的质量。

  灯工作电流的大小直接影响灯放电的稳定性和锐性光的输出强度。灯电流小,使能辐射的锐性光谱线窄、使测量灵敏度高,但灯电流太小时使透过光太弱,需提高光电倍增管灵敏度的增益,此时会增加噪音、降低信噪比;若灯电流过大,会使辐射的光谱产生热变宽和碰撞变宽,灯内自吸收增大,使辐射锐线光的强度下降,背景增大,使灵敏度下降,还会加快灯内惰性气体的消耗,缩短灯的使用寿命。空心阴极灯上都标有最大使用电流(额定电流,约为5-10mA),对大多数元素,日常分析的工作电流应保持额定电流的40%-60%较为合适,可保证稳定、合适的锐线光强输出。通常对于高熔点的镍、钴、钛、锆等的空心阴极灯使用电流可大些,对于低熔点易溅射的铋、钾、钠、铷、锗、镓等的空心阴极灯,使用电流以小为宜。

  6、测器光电倍增管工作条件的选择:日常分析中光电倍增管的工作电压一定选择在最大工作电压的1/3-2/3范围内。增加付高压能提高灵敏度,噪音增大,稳定性差;降低负高压,会使灵敏度降低,提高信噪比,改善测定的稳定性,并能延长光电倍增管的使用寿命。

  7、火焰燃烧器操作条件的选择:1)进样量:选择可调进样量雾化器,可根据样品的黏度选择进样量,提高测量的灵敏度。进样量小,吸收信号弱,不便于测量;进样量过大,在火焰原子化法中,对火焰产生冷却效应,在石墨炉原子化法中,会增加除残的困难。在实际工作中,应测定吸光度随进样量的变化,达到最满意的吸光度的进样量,即为应选择的进样量。

  2)原子化条件的选择a、火焰原子化法在火焰原子化法中,火焰类型和性质是影响原子化效率的主要因素。

  火焰类型的选择原则:对低、中温元素(易电离、易挥发),如碱金属和部分碱土金属及易于硫化合的元素(如Cu、Ag、Pb、Cd、Zn、Sn、Se等)可使用低温火焰。如空气-乙炔火焰对高温元素(难挥发和易生成氧化物的元素)如Al、Si、V、Ti、W、B等,使用氧化二氮-乙炔高温火焰。

  对分析线位于短波区(200nm以下),使用空气-氢火焰对其余多数元素,多采用空气-乙炔火焰(背景干扰低)火焰性质的选择调节燃气和助燃气的比例,可获得所需性质的火焰。

  对于确定类型的火焰,一般来说呈还原性火焰(燃气量大于化学及量)是有利的。对氧化物不十分稳定的元素如Cu、Mg、Fe、Co、Ni等用化学计量火焰(燃气与助燃气比例与它们之间化学反应计量相近)或氧化性火焰(燃气量小于化学计量)。

  b、石墨炉原子化法:在石墨炉原子化法中,合理选择干燥、灰化、原子化及除残温度与时间是十分重要的。干燥应在稍低于溶剂沸点的温度下进行,以防止试剂飞溅。灰化的目的是除去基体和局外组分,在保证被测元素没有损失的前提下尽可能使用较高的灰化温度。原子化温度的选择原则是,选用达到最大吸收信号的最低温度作为原子化温度。原子化时间的选择,应以保证完全原子化为准。在原子化阶段停止通保护气,以延长自由原子在石墨炉中的停留时间。除残的目的是为了消除残留物产生的记忆效应,除残温度应高于原子化温度.惰性气体原子化时常采用氩气和氮气作为保护气,氩气比氮气更好。氩气作为载气通入石墨管中,一方面将已气化的样品带走,另一方面可保护石墨管不致因高温灼烧被氧化。通常仪器都采用石墨管内、外单独供气,管外供气连续的且流量大,管内供气小并可在原子化期间中断。

  最佳灰化温度和最佳原子化时间干燥时间常选择100℃,时间为60S。灰化阶段为除去基体组分,以减少共存元素的干扰,通过绘制吸光度A与灰化温度t的关系来确定最佳灰化温度。在低温下吸光度A保持不变,当吸光度A下降时对应的较高温度即为最佳灰化温度,灰化时间约为30s。原子化阶段的最佳温度也可通过绘制吸光度A与原子化温度t的关系来确定,对多数元素来讲,当曲线上升至平顶形时,与最大A值对应的温度就是最佳原子化温度。在每个样品测定结束后,可在短时间内使石墨炉的温度上升至最高,空烧一次石墨管,燃尽残留样品,以实现高温净化。

关键字:光谱分析  灵敏度  干扰因素 引用地址:详解原子吸收光谱分析如何选择最佳实验条件

上一篇:安捷伦超快速Express Test全面升级
下一篇:近红外光谱无创血糖检测技术研究

推荐阅读最新更新时间:2024-03-30 22:41

奥松电子增强了湿度传感器灵敏度新方法
近日广州奥松电子新型MEMS半导体传感器芯片生产线正式投入运营,从成立至今的短短7年里,该公司在温湿度传感器、气体传感器等多个传感器领域有所建树。 日常生活中,空气中的水蒸气的含量不但会影响空气的湿度,而且会使空气出现潮湿或者干燥的现象。绝对湿度传感器正是用来测量空气真实的干湿程度,但市面上绝对湿度传感器部分的工艺是采用玻璃密封热敏电阻作为湿度感应原件。 因为其工艺结构的影响,导致热敏电阻对外界温度的响应非常缓慢,加热至稳定的时间甚至需要数十秒钟,而且正常使用中由于其响应速度偏慢,所以灵敏度较低。 为此,奥松电子申请了一项名为“绝对湿度传感器、热敏电阻及热敏电阻的制作方法”的发明专利(申请号:201711494556.0),申请人
[手机便携]
奥松电子增强了湿度传感器<font color='red'>灵敏度</font>新方法
基于87C196KC单片机的步进电机高灵敏度控制系统
1 引言 在现代控制系统中,数控机床的高灵敏度控制是一个重要的分支。而单片机体积小、重量轻,具有很强的灵活性,因此得到越来越广泛的应用,尤其在数控机床方面。目前,我国的许多应用领域仍以MCS-51系列8位单片机为主,但是在一些较为复杂,对实时性、灵敏性要求较高的场合,它就显得力不从心,不得不让位于16位单片机。87C196KC芯片为Intel公司的高性能16位单片机,是其CHMOS中的第二代产品。它不但集成了监视跟踪定时器WDT、高速输入输出通道HSIO、外部设备事件服务器,还具有高精度的10位A/D、D/A和PWM波发生器功能。87C196KC单片机拥有3路PWM发生器,它们分别由P2.5口、P1.3口和P1.4口输出,其内部
[单片机]
飞思卡尔惯性传感器增强汽车安全气囊灵敏度
飞思卡尔半导体公司近日推出一系列旨在提高下一代汽车安全气囊系统性能、灵敏度和可靠性的惯性传感器。飞思卡的新中加速度和高加速度( medium-g 和 high-g )加速计通过测量车辆的突然减速,然后触发安全气囊部署,从而监测碰撞事故。 飞思卡尔的 MMA6222EG 、 MMA6255EG 和 MMA621010EG 惯性传感器基于下一代高深宽比微机电系统( HARMEMS )技术,是一种经过验证的安全气囊传感应用技术。该加速计的先进转换器设计增强了传感器偏移性能和超阻尼反应,从而有助于提高系统的可靠性以及对高频率、高振幅寄生震荡的抵抗力。这些器件能够帮助识别可能引发虚假弹出的安全气囊系统状况,诸如 “ 砰 ”
[传感器]
NIST研究新成果:超强灵敏度磁感应计“瘦身”
由美国国家标准与技术研究所NIST(National Institute of Standards and Technology )开发的迷你磁力计的灵敏度比现行基于芯片的磁力计的1000倍还要强。 这种小型的廉价迷你磁力计可以达到femtotesla(磁场强度单位)级别上的准确性,过去在专用领域内庞大而昂贵的超导体量子干涉装置SQUIDs中才能达到这种准确性。 利用半导体激光通过米粒大小的充满铷蒸汽的管型瓶,NIST的研究人员在1毫米尺寸的封装上达到了70 femtotesla的准确度。这个研究团队展示了使用迷你磁力计记录了老鼠的心跳过程的例子;他们预期迷你磁力计也可以在脑磁波描记法(MEG)中得到应用,用来检测脑电波。比如
[焦点新闻]
Vishay推出探测距离达1米的新款接近和环境光传感器
宾夕法尼亚、MALVERN 2016 年 9 月26 日 日前,Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,光电子产品部发布新的探测距离可达1米的高灵敏度接近和环境光传感器---VCNL4100。Vishay Semiconductors VCNL4100采用Filtron 技术和小尺寸8mm x 3mm x 1.8mm表面贴装封装,将高功率红外发射器、接近和环境光的光探测器、信号处理IC和8位/16位ADC组合在一起。这颗三合一传感器具有中断功能,支持I2C总线通信接口,可用于智能家居、工业和办公设备。 VCNL4100的探测距离比前一代器件高5倍,可用在打印机、复印
[传感器]
Vishay推出探测距离达1米的新款接近和环境光传感器
利用石墨烯或将可制造出超高灵敏度传感器设备
在电子领域,石墨烯由于其几乎完全透光、强度大等特性,一直被认为是硅的接班人。在可弯曲屏幕、新能源电池等方面也早已有深入研究。而近期的一项研究让石墨烯有望制造出具备超高灵敏度的传感器设备。 今年早些时候,有研究人员公布一项智能隐形眼镜计划,它能让使用者拥有红外“夜视”能力。通过把石墨烯夹入到两片镜片中间,产生一种能够捕捉从可见光到红外线的任何光的传感器。他们已经制成一个比手指甲还小的原型,专家表示,有一天它将会被嵌入镜头,为士兵和其他有需要的人提供夜视能力。 近日,荷兰代尔夫特理工大学的科学家发现用石墨烯薄片制成的“鼓面”,能够在光的作用下发生振动,根据这一原理能够检测到非常微小的位置和力度的变化,未来有望据此用石墨烯制造出
[嵌入式]
数显压力表使用注意事项
1.指针在平衡点附近不停地小幅度往返快速摆动,其原因是放大器灵敏度过高. 2.指针在某一平衡位置或几个平衡位置附近无规律地摆。其原因是: (1)滑线电阻弄脏或氧化. (2)滑线电阻丝与母线松动. (3)滑线电阻或滑动触头磨损,造成接触不良。 (4)仪表受到干扰. (5)滑滚磨损。 3.指针在平衡点附近摆动,在左右摆动的幅度不定,而已是无视则地往返乱动。其原因是: (1)交流照或管的插头插座接触不良. (2)如是的安仪表厂生产的仪裴.则可能是放大器20极插头插座接触不良。 (3)有关焊点或接线有虚焊或虚接现象. (4)仪表受到严重干扰. 4.指针正反向运行迟滞、缓慢,其原因是: (1)经调节灵敏后,因下列原因放大器灵敏度仍然很低。
[测试测量]
灵敏度传感器实现动作识别,满足消费电子市场需求
  飞思卡尔半导体在微机电系统(MEMS)传感器设备设计制造领域具有全球领先的地位,通过推出高灵敏度的XYZ三轴加速计,满足当今智能移动设备领域日益增长的移动感应需求。从MP3播放器到PDA,再到超小的笔记本电脑,如今的消费者正在越来越多地通过其使用的便携式电子设备的种类以及对这些设备的定制方式来彰显自己的个性。便携式设备的设计人员也在不断寻找新途径,以便在不增加设备尺寸的情况下,让产品具有更大的显示屏和更多的新功能。设计人员还试图结合移动感应技术以保护易碎的电子组件安全,生产出更加稳定可靠的便携式设备。对于那些需要在小型封装中获得快速响应速度、低功耗、低电压的运行和休眠模式的用户来说,飞思卡尔的MMA7360L、 MMA7340
[传感器]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved