基于数字电源控制器UCD3138的一种新的输入电流检测方法

发布者:微电子旅人最新更新时间:2014-05-20 来源: EEWORLD关键字:UCD3138  数字电源控制器  电流检测 手机看文章 扫描二维码
随时随地手机看文章



1 引言

1.1  数字电源控制器UCD3138 的应用

    数字电源控制器UCD3138 因其自身所具备的良好的前馈功能,通信功能和可编程性等特点,在DC/DC电源中通常置于副边侧。常见的拓扑方案包括全桥,半桥和LLC 等。图1 所示的是应用数字电源(控制器)UCD3138 的硬开关全桥系统框图。UCD3138 位于副边侧,通过数字隔离器ISO7420CF完成驱动信号向原边侧的传递。

http://www.eccn.com/uploads/article/201405/20140519152703297.gif
Figure 1. 硬开关全桥系统框图

1.2  隔离电源拓扑中的电流互感器

图2 所示的是应用于全桥等拓扑中的电流互感器。其原边侧串入主功率回路,副边侧将按比例(比例系数为互感器的匝比T)衰减后的电流信息通过与采样电阻相乘得电压信息。位于副边侧的控制器UCD3138 通过读取该电压信息,可以完成逐周期保护等功能。

互感器副边侧输出电压:VT =(Iin÷T)×Rs

http://www.eccn.com/uploads/article/201405/20140519152703349.gif
Figure 2. 电流互感器应用电路

1.3   输入电流检测的原理

图3 所示意的是电流互感器副边侧输出端的电压信号。上下两组波形是在输入电压不同时所对应的输出。在输出功率确定后,随着输入电压变高,梯形波的上升沿将变陡,其平均值将变低。

http://www.eccn.com/uploads/article/201405/20140519152703554.gif
Figure 3. 电流互感器输出信号

电流互感器输出端的信号平均值与系统输入电流的平均值成近似比例关系,因此可以通过读取电流互感器输出端的平均值来推算输入电流。

2 UCD3138 的AFE 模块和Filter 模块

2.1 模块功能概述

UCD3138 的AFE 和Filter 用来完成对输出电压误差的采集,转换和环路计算,输出的数据进入到DPWM模块,最终生成合适的占空比。如图4 所示。

http://www.eccn.com/uploads/article/201405/20140519152703520.gif
Figure 4. UCD3138 的AFE 和Filter

在实际应用中,可以用AFE 和Filter 来采集电流互感器输出端的信号,并最终计算出其平均值。该功能的实现依赖于AFE 和Filter 所具备的如下特点:

1)  AFE 中的EADC 具备oversample 功能,可以在一个周期内采集1,2,4,8 个样本;

2)  AFE 对EADC 输出的数据可以进行平均(averaging),即可以对连续采集到的2,4,或8 个数据做累加,然后除于个数以得到平均值。

3)  Filter 是PID 结构,因此可以只使用累加环节(Integration 支路),从而可以计算出一段时间内的累加和。

2.2  EADC 的Oversample

DPWM模块可以在EADC 模块中产生采样触发信号,使EADC 完成一次采样。同时,EADC 还具有多次(2 次,4 次和8 次)采样的功能。以8 次采样为例,当EADC 收到DPWM的采样触发信号后, EADC 分别在采样基准的1/8 处,2/8 处,3/8 处,4/8 处,5/8 处,6/8 处,7/8 处和采样基准处完成8 次采样,如图5 所示。

http://www.eccn.com/uploads/article/201405/20140519152704260.gif
Figure 5. EADC 的Oversample

2.3  EADC 的averaging

EADC 提供了两种数据平均方式,分别是连续方式(consecutive mode)平均和空间方式(spatialmode)平均。图6 示意的如何对数据进行连续方式平均。其原理就是对连续采样的2,4 或8 个数据进行累加,然后除于累加的个数,便得到了平均值。

计算后的平均值将送入到Filter 环节。

http://www.eccn.com/uploads/article/201405/20140519152704853.gif
Figure 6. EADC 的Oversample

2.4  UCD3138 的Filter

图7 是UCD3138 的filter,基于PID 结构。当只使用I 支路(即累加环节),可以对Xn数据进行不断的累加,累加的结果存储在KI_YN 寄存器中。而Xn数据就是来自EADC 的输出。

http://www.eccn.com/uploads/article/201405/20140519152704832.gif
Figure 7. UCD3138 的Filter 结构

2.5  全流程数据处理

当oversample 配置为8 次,EADC 的平均次数配置为2 次,在2 个周期的时间内KI_YN 寄存器得到的数据如下图8 所示:

1)  每个周期采样8 个样本,故2 个周期共采集16 个;

2)  每2 个样本进行平均,平均后的数据进入到累加环节;

3)  在2 个周期内,KI_YN 寄存器中总共存储有8×2=16 个样本的累加和;

http://www.eccn.com/uploads/article/201405/20140519152704906.gif
Figure 8. 全流程数据处理

3 读取三角波的平均值

3.1 测试原理简述

在UCD3138 的EAP1/EAN1 引脚(如图4)接入直流电平信号或三角波信号,然后配置合理的

oversample,averaging 和采集的周期个数,最终在KI_YN 寄存器可以得到样本总和。

然后将样本总和与样本个数相除,便得到了样本的平均值。

3.2  直流电平信号平均值的读取

在EAP1 引脚接入直流电平信号(如图9 左中的CH1),实测平均值为220mV。

通过配置oversample 为8 次,averaging 为8 次,在两个周期内得到的平均值为-156÷8=-19.5。此时,DAC_Value寄存器中写入的值为2048,因此,根据软件采样确定的平均值为:

(2048÷16)×1.5625mV - (-19.5)= 219.5mV

该值与实际值的偏差小于-0.5%。上述公式的含义可以参考“参考文献5”。

http://www.eccn.com/uploads/article/201405/20140519152704158.gifhttp://www.eccn.com/uploads/article/201405/20140519152704332.gif
Figure 9. 直流信号平均值读取

3.3  三角流平均值的读取

在EAP1 引脚接入三角波信号(如图10 左中的CH1),实测平均值为136mV。

通过配置oversample 为8 次,averaging 为8 次,在两个周期内得到的平均值为466÷8=58.25。此时,DAC_Value寄存器中写入的值为2048,因此,根据软件采样确定的平均值为:

(2048÷16)×1.5625mV - 58.25= 141.75mV

该值与实际值的偏差小于5%。

http://www.eccn.com/uploads/article/201405/20140519152704343.gifhttp://www.eccn.com/uploads/article/201405/20140519152704626.gif
Figure 10. 三角波信号平均值读取

3.4  软件流程与代码

图11 是整个数据处理的软件流程图,主要包含主程序中的初始化与配置,快中断程序中的数据处理等两个部分。

对快中断部分,使用周期快中断,中断间隔为256 个周期。每次处理都是连续三次进入快中断,在第一次进入快中断后,配置EADC 和Filter;在第二次进入后进行数据读取,此时在KI_YN 中共有8×256=2048 个样本的累加和。(oversample 设置为8)

http://www.eccn.com/uploads/article/201405/20140519152704461.gif
Figure 11. 软件处理流程

关键代码如下:

1. 配置Dpwm0 周期中断及打开中断功能

http://www.eccn.com/uploads/article/201405/20140519152704879.gif

http://www.eccn.com/uploads/article/201405/20140519152704305.gif


2. 快中断处理程序

仅在第二次和第三次进入快中断后进行数据的读取。

http://www.eccn.com/uploads/article/201405/20140519152704524.gif

3.配置函数handle_current_averaging_config()

该函数主要完成EADC1 与Filter1 的连接配置、EADC 的基本配置(包括DAC_VALUE 的写入, AFE_GAIN 的配置,Averaging 的配置等)、Oversample 的配置及Filter 的配置。

http://www.eccn.com/uploads/article/201405/20140519152705137.gif

4.配置函数handle_current_averaging()

该函数主要完成KI_YN 寄存器中数据的读取,Filter 的复位(需要对KI_YN 寄存器清零,不

然该寄存器会溢出)及Filter 的使能等。

http://www.eccn.com/uploads/article/201405/2014051915270589.gif

4 实测单板输入电流

4.1 测试单板概述

在一款基于UCD3138 的硬开关全桥EVM 板(UCD3138HSFBEVM-029)上进行输入电流的实际测试。该单板的关键技术规格如下:

● 输入电压:36V~72V

● 输出功率:12V×30A

● 功率拓扑:单级硬开关全桥

● 电流互感器:如图2 所示,T1 的匝比为100:1,Rs为10 ohm。

为实现EADC1 和Filter1 读取和计算输入电流,需要将电流互感器副边侧的输出连接到EAP1 和EAN1。单板其余部分保留原有设计。

4.2  实测数据

1.输出电流设定为3A,输入电压设定为50V

实测电流互感器的输出信号如图12(左),其平均值为89.26mV。此时输入电流为850mA,二者存在近似比例关系。比例系数主要由互感器的匝比与采样电阻决定:0.01×10=0.1。

http://www.eccn.com/uploads/article/201405/20140519152705436.gifhttp://www.eccn.com/uploads/article/201405/20140519152705943.gif

Figure 12. 实测波形及实际读取数据1

将DAC_VALUE 设定为1024,通过软件计算后,读取到的current_x16 变量(该变量含义参考3.4小节)值为9,如图12(右)所示。因此,计算出的平均值为:

(1024÷16)×1.5625mV – 9 = 91mV

该值与实测值的误差小于5%,与实际输入电流的误差小于7%。

2.输出电流设定为3A,输入电压设定为55V

实测电流互感器的输出信号如图13(左),其平均值为82.48mV。此时输入电流为780mA。

http://www.eccn.com/uploads/article/201405/20140519152705654.gifhttp://www.eccn.com/uploads/article/201405/2014051915270554.gif

Figure 13. 实测波形及实际数据读取2

将DAC_VALUE 设定为1024,通过软件计算后,读取到的current_x16 变量值为15,如图13(右)所示。因此,计算出的平均值为:

(1024÷16)×1.5625mV – 13 = 87mV

该值与实测值的误差小于5%,与实际输入电流的误差小于12%。

5 总结

通过上文描述可知,在对UCD3138 的EADC 和Filter 进行相应配置后,可以完成对EAP/EAN 引脚输入信号平均值的读取,而且读取值与实际值的误差较小。

同样,该功能可以应用于单板输入电流的读取,实测结果亦证实了这一点。受限于轻载条件下实际输入电流与电流互感器的输出存在较大误差,因此,软件读取值与实际输入电流存有一定误差。

关键字:UCD3138  数字电源控制器  电流检测 引用地址:基于数字电源控制器UCD3138的一种新的输入电流检测方法

上一篇:领邦钕铁硼尺寸测量为什么测得准?
下一篇:安捷伦推出带有灵活频率选件的阻抗分析仪

推荐阅读最新更新时间:2024-03-30 22:45

具有电流检测功能的电路的设计方案
1 引言 通常所说的电流检测是用来检测某部件、或者导线通过的电流,一般用互感器、分流器等将电流信号转化成电压信号,然后再对其进行处理放大,作为后面电路保护、检测使用。目前,已经有很多不同的电流检测技术已被公布或实施。其中常用的直流电流检测方法主要是通过串联电阻或者基于霍尔效应原理进行,在通常情况下被测电流信号较大,串联电阻对输入电流信号的影响可以忽略不计,但随着科技发展的需要,被检测信号日渐减小,在系统电路中如果直接串联电阻,会影响前级电路工作,导致被测电流信号的大小发生改变,此时这一影响已经不能再被忽略。 为了检测小电流信号,同时实现将输入的电流信号缩小的功能,以便满足后续处理电路的要求,本文给出了一种不同于传统电流检测电路中常
[电源管理]
具有<font color='red'>电流检测</font>功能的电路的设计方案
汽车电子电流检测方法及分析
  这里主要介绍电流的检测方法,发现设计中容易被忽略的一些因素。首先考虑两种不同的方法:基于磁场的检测方法和基于分流器的检测方法。   1.基于磁场的检测方法(以电流互感器和霍尔传感器为代表)具有良好的隔离和较低的功率损耗等优点,在电源驱动技术和大电流领域应用较多,但它的缺点是体积较大,补偿特性、线性以及温度特性不理想。   2.分流器的方法高精度低阻值电阻器目前具有大功率和小体积的特点,这种方法成本较低,精度较高。在汽车电子中用的较多。   以车窗控制为例,想要实现防夹的功能,通常是同时使用两种方法进行检测的。   面对的车身电子控制系统的工作电流,一般都在在1-100A之间,当然大部分负载都有Inrush电流,这也是我
[汽车电子]
汽车电子<font color='red'>电流检测</font>方法及分析
基于双输出DC/DC控制器结合数字电源系统管理和模拟控制环路以实现±0.5%的VOUT准确度
  尽管电源管理对新式电子系统的可靠运行至关重要,但是在今天以数字方式管理的系统中,稳压器也许是最后一个仍然存在的“盲点”。就稳压器而言,很少有办法直接配置或监视关键电源系统运行参数。因此,希望全面实现数字控制的电源设计师必须使用混杂在一起的排序器、微控制器和电压监察器,以设定基本的稳压器启动和安全功能。目前已有数字可编程 DC/DC 转换器可用,特别是那些为 VRM 内核电源而设计并具备 VID 输出电压控制功能的转换器,但是这类有特定应用目标的转换器不能直接沟通重要的工作参数,例如实时电流。   LTC3880 / LTC3880-1 结合了双输出同步降压型DC/DC控制器和拥有通过基于 I2C 的 PMBus 总线使用全面的
[电源管理]
基于双输出DC/DC<font color='red'>控制器</font>结合<font color='red'>数字电源</font>系统管理和模拟控制环路以实现±0.5%的VOUT准确度
技术文章—电流检测技术综述
摘要:现如今,电流检测的技术在工业发展的推动下日臻完善。然而并不是传统的方案就不可取,在不同的应用环境下还是有一席用武之地。电流检测之后通常被用来执行测量“多大”电流和当电流“过大”时动作判断的两个基本功能。 1、欧姆定律 (1) 分流电阻 这种拓扑结构,都存在一定的风险性,低端检测电路易对地线造成干扰;高端检测,电阻与运放的选择要求高。 检测电阻是最简单的电流测量方法,既可用于测量交流电流也可用于测量直流电流。用该方法进行电流测量的最大弊端是向待测回路中接入了电阻,造成了电能消耗(I^2*R)。 优 成本低、精度较高、体积小 劣 温漂较大,精密电阻的选择较难,无隔离效果 (2)TRA
[测试测量]
技术文章—<font color='red'>电流检测</font>技术综述
MAX9611/MAX9612电流检测放大器 带有ADC和运
该MAX9611/MAX9612是高边电流检测和集成的12位 ADC 和一个增益模块,可配置无论是作为运算放大器或比较器,使这些装置的工业和汽车应用相当理想放大器。   高边, 电流检测放大器 工作在0V至60V的宽输入共模电压范围。可编程的满量程电压这些放大器(440mV,110mV的,和55mV)提供选择检测电阻值的动态范围宽,精确的电流测量和应用的灵活性。不论是在国内一个运算放大器或比较器的选择提供给用户。内部放大器可以用于限制浪涌电流,或创建一个在一个封闭的回路系统的电流源。该比较器可用于监视故障事件的快速反应。   一个I ² C控制的12位,500sps模拟到数字转换器(ADC)可以用来读取通过检测电阻(VSENS
[模拟电子]
MAX9611/MAX9612<font color='red'>电流检测</font>放大器 带有ADC和运
TT Electronics低阻值电流检测电阻器缩小设计占板面积
英国韦布里奇 2016年11月1日 用于性能关键应用的的全球工程电子供应商TT Electronics宣布推出LCS系列薄膜电阻器,用于检测3A以下范围的直流和交流电流,该产品将精确的薄膜电阻器性能带入低欧姆值的领域,用于非常精确的电流检测应用。大多数薄膜芯片电阻的最低欧姆值是在1至10欧姆范围,但TT Electronics的LCS系列薄膜电阻器利用专有技术,将这个数值扩展到低至100毫欧,该电阻器还具有对温度变化的低灵敏度。 LCS系列电阻器面向电源、电池监测、工艺控制和负载点转换器的设计人员,将会被工业、医疗、仪器仪表和IT等市场领域所接受。 该系列电阻器的精度水平是 0.5%和 50ppm/ C,为电流检测
[电源管理]
TT Electronics低阻值<font color='red'>电流检测</font>电阻器缩小设计占板面积
基于MAX5060的带无损电流检测的大电流电源设计
概述 目前,大多数数据处理单元需要从电源消耗更大的电流,以满足更高的处理速度。这些应用中,无损电流检测以及地电位偏差对于精确控制输出电压、输出电流非常关键。 MAX5060 PWM降压电源控制器利用平均电流模式控制技术跟踪负载电流,器件采用差分检测技术精确控制输出电压。本参考设计中利用电感的等效串联电阻(DCR)检测电流,省去了检流电阻的功耗。 本参考设计提供了一个大电流(30A)电源设计方案,具有较高的系统效率和良好的负载调节,以下给出了完整的电路原理图、材料清单(BOM)、效率测量及测试结果。 规格与设计步骤 参考设计能够达到以下技术指标。 输入电压:12V ±10% 输出电压:1.5V 输出电流:30A 输出纹
[测试测量]
基于MAX5060的带无损<font color='red'>电流检测</font>的大电流电源设计
松下电器开发出电流检测DNA序列新技术
  【日经BP社报道】松下电器产与甲南大学杉本直己教授联合开发出了电流识别DNA碱基序列的新技术。DNA碱基序列的不同,会导致药效和疾病发病风险等个人体征上的差异。应用此次的开发技术,在医院和诊所等医疗机构,有望实现根据个人体质进行健康管理和药品处方的DNA分析系统。预计“5年后”(松下电器)应用于实际。    东芝也在开发电流检测仪   作为DNA碱基序列的检测器件,目前DNA芯片的开发相当活跃。此前主要在研究领域使用的DNA芯片多采用“荧光检测(或者微阵列)型”方式。需要事先在要研究的DNA上做好荧光标记,让探针DNA与芯片反应后再照射激光,然后通过确认荧光的有无和位置来判断键合与否,以及与哪个DNA发生了键合等。   
[传感器]
热门资源推荐
热门放大器推荐
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved