当欧洲航天局(ESA)在筹备进行需要多年宇宙旅行的太空探测器时,最首要的任务就是:达到精度的极致。LT Ultra(一家高光学精密金属制造商)采用卡尔• 蔡司的测量技术来保证如此高的精度要求。
作为欧洲首个水星计划,探测器将在历时6 年的旅程中, 轨道运行预计一年甚至两年,经历的温度范围从零下40 到零上300 摄氏度,该计划当然不会像是在公园里散步那样惬意。因此, 针对2014 年所有预计运行到达离太阳最近的行星的部件都必须满足特殊的高要求。其中包括测高仪,伯尔尼大学的空间研究人员已经在测高仪的电路板上放置了探头。它将以小于一米的精度计算行星的整体表面数据。
测高仪由三个主要部分组成:向行星发射短脉冲的激光仪、捕获从表面和反射板反射的激光束的望远镜、四个精心加工的铝制零件。这些反射板反射强烈的太阳光和以一定的角度入射的杂散光,保护激光仪和望远镜不受损伤或损坏。由位于德国Herdwangen-Schonach 的LT ULTRA 技术有限公司生产的七个组件将其配置到每一个反射板上。因而它们的制造必须满足很高的要求,生产和质量检验需要自始至终保证严格控制。
测量技术需同步配置
拥有70 名员工的LT Ultra 精密技术有限公司,是高性能金属光学、超精密设备、空气轴承组件和激光束引导组件的制造商。公司成立于1995 年,其产品常用于机场的行李扫描仪,也用于日内瓦欧洲粒子物理研究所所需要的新型粒子加速器的制造。
LT Ultra 专业从事超精密设备的制造:机床精度小于1 微米。然而,他们认为只有准确的加工是远远不够的:“如果没有相应的测量设备,要达到今天的高精度要求完全不可能,”LT Ultra 总裁Richard Wideman 先生解释说,“我们的生产装备正变得越来越精密。测量技术也必须保持同步配置。”正是这个原因,公司从卡尔• 蔡司购买了PRISMO ultra 测量机。过去, LT Ultra 对许多精度要求特别高的测量主要依赖于外部服务供应商提供的设备。由于常常无法按要求完成各种任务,因此大大放慢了工作进度,致使许多项目无法按时进行。对该公司来说, 要接受欧洲核子研究委员会或欧洲航空局的订单,PRISMO ultra 测量机是非常必要的。
推动测量技术达到极限
“该测量机对我们来说是一个重要的技术里程碑,”Wideman 总结说。卡尔• 蔡司专为该公司配置的PRISMO ultra 已经在此期间投入运行。该标准型号的桥式测量机已经达到0.6 微米的精度。对大多数产品来说,这种高水平的精确度通常已经足够, 但并不表示可以满足所有需求。例如:用于水星计划的厚度仅为几十分之一毫米反射板上的零件,要求精度小于250 纳米, 达到这样的要求一切工作才能正常进行。这对测量技术来说可不是一件轻松的事情。
卡尔• 蔡司广泛地与应用技术、电子技术和软件开发的专家一起工作,成功地解决了这些挑战。PRISMO ultra 的每个组件都经过手选,并经过了精心的装配,每一个细节都考虑得仔细周全,从而使得PRISMO ultra 能够完全满足这些高精度要求。
然而,反射板对测量技术提出了额外的要求:铝部件的光学面是极为敏感的,容易被接触式传感器划伤。通常可以通过使用光学扫描和非接触式传感器克服这种困难。然而,具体零件复杂的几何形状和不同的表面结构,与高精度要求结合在一起,使光学测量技术的使用成为泡影。接触式测量成为了不二的选择。
卡尔• 蔡司的专家们对接触式传感器的控制器参数进行了大量优化,并专门针对这项特殊工作修改了软件设置。因此,测针只是非常轻微地接触工件,完全能确保不损坏敏感的工件表面。
成功的重要条件
只要按下按钮,PRISMO 测量机就开始扫描整个工件。对于反射板组件,PRISMO 对大约300 个内部和外部测量点的形状和位置的标称尺寸进行测量比较。每一部件都像一个扁平的、有光泽的无底锅,但并不是特别薄,它只是一个双曲椭圆形。
在测量之前,铝件需要在超精密车床上进行约几个小时的多道工序加工。在这些加工工序之间,铝件还需要被冷却到零下40 摄氏度,然后再加热到零上80 摄氏度以消除张力。最后, 在电镀槽内进行电化学处理使工件具有光泽的外观。可以说在所有的过程中若没有可靠的质量检验,每一个步骤都将毫无价值。如果LT Ultra 不曾在新型测量机上进行投资,有谁知道LT Ultra 的产品能去水星旅行。Wideman 对一件事是肯定的:“质量检验是我们的命脉。(end)
关键字:太空探测 高精密 测量技术
引用地址:用于太空探测的高精密测量技术
作为欧洲首个水星计划,探测器将在历时6 年的旅程中, 轨道运行预计一年甚至两年,经历的温度范围从零下40 到零上300 摄氏度,该计划当然不会像是在公园里散步那样惬意。因此, 针对2014 年所有预计运行到达离太阳最近的行星的部件都必须满足特殊的高要求。其中包括测高仪,伯尔尼大学的空间研究人员已经在测高仪的电路板上放置了探头。它将以小于一米的精度计算行星的整体表面数据。
测高仪由三个主要部分组成:向行星发射短脉冲的激光仪、捕获从表面和反射板反射的激光束的望远镜、四个精心加工的铝制零件。这些反射板反射强烈的太阳光和以一定的角度入射的杂散光,保护激光仪和望远镜不受损伤或损坏。由位于德国Herdwangen-Schonach 的LT ULTRA 技术有限公司生产的七个组件将其配置到每一个反射板上。因而它们的制造必须满足很高的要求,生产和质量检验需要自始至终保证严格控制。
测量技术需同步配置
拥有70 名员工的LT Ultra 精密技术有限公司,是高性能金属光学、超精密设备、空气轴承组件和激光束引导组件的制造商。公司成立于1995 年,其产品常用于机场的行李扫描仪,也用于日内瓦欧洲粒子物理研究所所需要的新型粒子加速器的制造。
LT Ultra 专业从事超精密设备的制造:机床精度小于1 微米。然而,他们认为只有准确的加工是远远不够的:“如果没有相应的测量设备,要达到今天的高精度要求完全不可能,”LT Ultra 总裁Richard Wideman 先生解释说,“我们的生产装备正变得越来越精密。测量技术也必须保持同步配置。”正是这个原因,公司从卡尔• 蔡司购买了PRISMO ultra 测量机。过去, LT Ultra 对许多精度要求特别高的测量主要依赖于外部服务供应商提供的设备。由于常常无法按要求完成各种任务,因此大大放慢了工作进度,致使许多项目无法按时进行。对该公司来说, 要接受欧洲核子研究委员会或欧洲航空局的订单,PRISMO ultra 测量机是非常必要的。
推动测量技术达到极限
“该测量机对我们来说是一个重要的技术里程碑,”Wideman 总结说。卡尔• 蔡司专为该公司配置的PRISMO ultra 已经在此期间投入运行。该标准型号的桥式测量机已经达到0.6 微米的精度。对大多数产品来说,这种高水平的精确度通常已经足够, 但并不表示可以满足所有需求。例如:用于水星计划的厚度仅为几十分之一毫米反射板上的零件,要求精度小于250 纳米, 达到这样的要求一切工作才能正常进行。这对测量技术来说可不是一件轻松的事情。
卡尔• 蔡司广泛地与应用技术、电子技术和软件开发的专家一起工作,成功地解决了这些挑战。PRISMO ultra 的每个组件都经过手选,并经过了精心的装配,每一个细节都考虑得仔细周全,从而使得PRISMO ultra 能够完全满足这些高精度要求。
然而,反射板对测量技术提出了额外的要求:铝部件的光学面是极为敏感的,容易被接触式传感器划伤。通常可以通过使用光学扫描和非接触式传感器克服这种困难。然而,具体零件复杂的几何形状和不同的表面结构,与高精度要求结合在一起,使光学测量技术的使用成为泡影。接触式测量成为了不二的选择。
卡尔• 蔡司的专家们对接触式传感器的控制器参数进行了大量优化,并专门针对这项特殊工作修改了软件设置。因此,测针只是非常轻微地接触工件,完全能确保不损坏敏感的工件表面。
成功的重要条件
只要按下按钮,PRISMO 测量机就开始扫描整个工件。对于反射板组件,PRISMO 对大约300 个内部和外部测量点的形状和位置的标称尺寸进行测量比较。每一部件都像一个扁平的、有光泽的无底锅,但并不是特别薄,它只是一个双曲椭圆形。
在测量之前,铝件需要在超精密车床上进行约几个小时的多道工序加工。在这些加工工序之间,铝件还需要被冷却到零下40 摄氏度,然后再加热到零上80 摄氏度以消除张力。最后, 在电镀槽内进行电化学处理使工件具有光泽的外观。可以说在所有的过程中若没有可靠的质量检验,每一个步骤都将毫无价值。如果LT Ultra 不曾在新型测量机上进行投资,有谁知道LT Ultra 的产品能去水星旅行。Wideman 对一件事是肯定的:“质量检验是我们的命脉。(end)
上一篇:椭圆齿轮流量计的设计原理分析
下一篇:质量流量计在液化石油气流量测量中的应
推荐阅读最新更新时间:2024-03-30 22:46
一种基于CCD技术的钢管长度测量系统设计
钢管精整生产线中有一道工序,要对每根钢管的长度进行测量。目前在用的钢管自动测长系统基本可以分为两种:一种是使用推钢装置将到位静止的钢管前推一定的距离,通过与推钢装置同步旋转的编码器和按顺序安装的光电传感器来计算钢管长度;另一种是采用在线测长,即通过旋转辊道带动钢管轴向平移,利用压在钢管上的摩擦轮的运动带动脉冲编码器,并结合光电传感器来计算钢管长度。 本研究分析了在线测长的测量原理和物理实现,以FPGA作为中央处理器,实现系统的高集成度;采用线阵CCD器件TCDl206SUP作为光电传感器,实现对钢管长度高精度的测量,并通过RS-485通信实现测量结果的传输,增强了系统的远程控制性能和资源共享。 1 系统的测量原理
[测试测量]
面向非专业的射频测量技术基础
引言 当前,基于射频原理的无线通信产品俯拾即是,其数量的增长速度也非常惊人。从蜂窝电话和无线PDA,到支持WiFi的笔记本电脑、蓝牙耳机、射频身份标签、无线医疗设备和ZigBee传感器,射频设备的市场规模在飞速扩大。仅从今年来看,全球制造并销售的蜂窝电话将高达8.5亿多只。 要想进行全面的生产测试并提高测试产能,测试工程师们必须要理解射频基本原理,清楚测试的内容,并懂得选用最适合 的仪器完成这些测试工作。问题是,大多数从事低频应用(工作频率在1MHz以下)的工程师不太熟悉高频的应用特点。 射频术语:您必须掌握的 工作语言 忘掉电压,射频工程师常用功率 射频信号的强度千差万别。随着信号在自由空间的传
[测试测量]
测试测量技术发展趋势展望与探讨
30多年来,作为测试测量行业的创新者和虚拟仪器技术的领导者,National Instruments一直致力于为工程师和科学家们提供一个通用的软硬件平台,用于科技应用和工程创新。伴随着测试需求的多样化和复杂化,这种以软件为核心的测试策略正逐渐成为行业主流的技术,并得到广泛的应用,在提高效率的同时降低测试成本。在新兴商业技术不断涌现的今天和未来,测试测量行业正呈现出五个重要的发展方向。 目录 趋势一:软件定义的仪器系统成为主流 趋势二:多核/并行测试带来机遇和挑战 趋势三:基于FPGA的自定义仪器将更为流行 趋势四:无线标准测试的爆炸性增长 趋势五:协议感知(Protocol-Aware)ATE将影响半导体的测试 趋势一:软件
[测试测量]
相关技术在热轧速度在线测量中的应用
摘 要: 介绍了利用相关技术对热轧速度进行在线测量的方法和原理及研制出的非接触在线相关测速仪。该测速仪已在马钢热轧材运动速度测量中得到应用。
关键词: 相关 测速仪 渡越时间
1 相关测速的意义
相关技术是以信息论和随机过程理论为基础的,近20多年来,它在许多领域得到了广泛应用,尤其是在检测技术领域内,如速度、流量测量等方面获得了迅速的发展。本文以热轧材速度为对象,研究相关技术在热轧材非接触式在线测量中的应用。热轧材的速度在线检测是连轧生产中一个重要问题,也是实现连轧无张力控制的关键。由于接触式速度测量存在前滑现象,测量误差较大,其应用因此受到限制,而非接触式测速法不存
[应用]
基于光电技术的脉搏测量原理
1 引言 脉搏测量属于检测有无脉博的测量,有脉搏时遮挡光线,无脉搏时透光强,所采用的传感器是红外接收二极管和红外发射二极管。用于体育测量用的脉搏测量大致有指脉和耳脉二种方式。这二种测量方式各有优缺点,指脉测量比较方便、简单,但因为手指上的汗腺较多,指夹常年使用,污染可能会使测量灵敏度下降;耳脉测量比较干净,传感器使用环境污染少,容易维护。但因耳脉较弱,尤其是当季节变化时,所测信号受环境温度影响明显,造成测量结果不准确。 2 脉搏信号的拾取 脉搏信号拾取电路如图1所示,IClA接为单位 增益缓冲器以产生2.5V的基准电压。 红外接收二极管在红外光的照射下能产生电能,单个二极管能产生O.4 V电压,0.5 mA电流。BPW83
[测试测量]
风速仪的测量技术以及选型指南
风速仪的探头选择 0至100m/s的流速测量范围可以分为三个区段:低速:0至5m/s;中速:5至40m/s;高速:40至100m/s。风速仪的热敏式探头用于0至5m/s的精确测量;风速仪的转轮式探头测量5至40m/s的流速效果最理想;而利用皮托管则可在高速范围内得到最佳结果。正确选择风速仪的流速探头的一个附加标准是温度,通常风速仪的热敏式传感器的使用温度约达+-70C。特制风速仪的转轮探头可达350C。皮托管用于+350C以上。 风速仪的热敏式探头 风速仪的热敏式探头的工作原理是基于冷冲击气流带走热元件上的热量,借助一个调节开关,保持温度恒定,则调节电流和流速成正比关系。当在湍流中使用热敏式探头时,来自各个方向的气流同时冲击热
[测试测量]
工业机器人的高精密RV减速器技术迎来新发展
(文章来源:北京亦庄) 随着我国工业机器人应用市场的快速发展,作为核心部件之一的工业机器人高精密,市场需求规模也随之增长,而这项技术一直被国外几家大公司所垄断。近日,区内企业北京智同精密传动科技有限责任公司传来喜讯,公司历经多年研发,突破这一制约我国机器人产业发展的卡破子技术,成功实现高精密RV减速器批量化生产。 控制器、驱动系统、减速器是机器人最核心的三大部件,没有减速器,机器人关节臂就不能正常运转,由此可见减速器对于机器人的重要性。 目前国际上具备大规模生产能力且产品性能可靠的RV减速器制造企业较少,全球绝大多数市场份额已被日本企业占据。国产减速器价格虽然便宜,供货期短,但产品性能与国外产品存在较大差距。因此,国
[机器人]
iGPS测量系统实现关键技术及应用
20世纪70年代,美国陆、海、空三军联合研制出GPS(GlobalPositioning System)全球定位系统(见图1),主要为陆、海、空三军提供实时、全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的。经过几十年的发展,GPS系统不仅仅只用于军事用途,现在已经逐渐深入到人们的日常生活当中,被视为全世界通用的定位系统。GPS系统的优势不仅在于它的先进技术,更在于它的系统理念。 图1 美国GPS全球定位系统 20世纪90年代,在GPS测量原理的启发下,美国Arcsecond公司率先开发出了一种具有高精度、高可靠性和高效率的室内GPS(indoorGPS,iGPS)系统(见图2),主要用于解决大尺寸室内
[测试测量]